Publications

2024

Rutkove, Seward B, Courtney E McIlduff, Elijah Stommel, Sean Levy, Christy Smith, Hilda Gutierrez, Sarah Verga, et al. (2024) 2024. “Assessing Pulmonary Function in ALS Using Electrical Impedance Tomography.”. Amyotrophic Lateral Sclerosis & Frontotemporal Degeneration, 1-8. https://doi.org/10.1080/21678421.2024.2334075.

Objective: We sought to determine whether thoracic electrical impedance tomography (EIT) could characterize pulmonary function in amyotrophic lateral sclerosis (ALS) patients, including those with facial weakness. Thoracic EIT is a noninvasive, technology in which a multi-electrode belt is placed across the chest, producing real-time impedance imaging of the chest during breathing. Methods: We enrolled 32 ALS patients and 32 age- and sex-matched healthy controls (HCs) without underlying lung disease. All participants had EIT measurements performed simultaneously with standard pulmonary function tests (PFTs), including slow and forced vital capacity (SVC and FVC) in upright and supine positions and maximal inspiratory and expiratory pressures (MIPs and MEPs, respectively). Intraclass correlation coefficients (ICCs) were calculated to assess the immediate reproducibility of EIT measurements and Pearson's correlations were used to explore the relationships between EIT and PFT values. Results: Data from 30 ALS patients and 27 HCs were analyzed. Immediate upright SVC reproducibility was very high (ICC 0.98). Correlations were generally strongest between EIT and spirometry measures, with R values ranging from 0.64 to 0.82 (p < 0.001) in the ALS cohort. There were less robust correlations between EIT values and both MIPs and MEPs in the ALS patients, with R values ranging from 0.33 to 0.44. There was no significant difference for patients with and without facial weakness. There were no reported adverse events. Conclusion: EIT-based pulmonary measures hold the promise of providing an alternative approach for lung function assessment in ALS patients. Based on these early results, further development and study of this technology are warranted.

Lin, Cindy Shin-Yi, James Howells, Seward Rutkove, Sanjeev Nandedkar, Christoph Neuwirth, Yu-Ichi Noto, Nortina Shahrizaila, et al. (2024) 2024. “Neurophysiological and Imaging Biomarkers of Lower Motor Neuron Dysfunction in Motor Neuron Diseases/Amyotrophic Lateral Sclerosis: IFCN Handbook Chapter.”. Clinical Neurophysiology : Official Journal of the International Federation of Clinical Neurophysiology 162: 91-120. https://doi.org/10.1016/j.clinph.2024.03.015.

This chapter discusses comprehensive neurophysiological biomarkers utilised in motor neuron disease (MND) and, in particular, its commonest form, amyotrophic lateral sclerosis (ALS). These encompass the conventional techniques including nerve conduction studies (NCS), needle and high-density surface electromyography (EMG) and H-reflex studies as well as novel techniques. In the last two decades, new methods of assessing the loss of motor units in a muscle have been developed, that are more convenient than earlier methods of motor unit number estimation (MUNE),and may use either electrical stimulation (e.g. MScanFit MUNE) or voluntary activation (MUNIX). Electrical impedance myography (EIM) is another novel approach for the evaluation that relies upon the application and measurement of high-frequency, low-intensity electrical current. Nerve excitability techniques (NET) also provide insights into the function of an axon and reflect the changes in resting membrane potential, ion channel dysfunction and the structural integrity of the axon and myelin sheath. Furthermore, imaging ultrasound techniques as well as magnetic resonance imaging are capable of detecting the constituents of morphological changes in the nerve and muscle. The chapter provides a critical description of the ability of each technique to provide neurophysiological insight into the complex pathophysiology of MND/ALS. However, it is important to recognise the strengths and limitations of each approach in order to clarify utility. These neurophysiological biomarkers have demonstrated reliability, specificity and provide additional information to validate and assess lower motor neuron dysfunction. Their use has expanded the knowledge about MND/ALS and enhanced our understanding of the relationship between motor units, axons, reflexes and other neural circuits in relation to clinical features of patients with MND/ALS at different stages of the disease. Taken together, the ultimate goal is to aid early diagnosis, distinguish potential disease mimics, monitor and stage disease progression, quantify response to treatment and develop potential therapeutic interventions.

Simon, Mirela, V, Seward B Rutkove, Long Ngo, Corey R Fehnel, Alvin S Das, Todd Sarge, Somnath Bose, Magdy Selim, and Sandeep Kumar. (2024) 2024. “Understanding the Variability of the Electrophysiologic Laryngeal Adductor Reflex.”. Clinical Neurophysiology : Official Journal of the International Federation of Clinical Neurophysiology 162: 141-50. https://doi.org/10.1016/j.clinph.2024.03.019.

OBJECTIVE: The laryngeal adductor reflex (LAR) is vital for airway protection and can be electrophysiologically obtained under intravenous general anesthesia (IGA). This makes the electrophysiologic LAR (eLAR) an important tool for monitoring of the vagus nerves and relevant brainstem circuitry during high-risk surgeries. We investigated the intra-class variability of normal and expected abnormal eLAR.

METHODS: Repeated measures of contralateral R1 (cR1) were performed under IGA in 58 patients. Data on presence/absence of cR2 and potential confounders were also collected. Review of neuroimaging, pathology and clinical exam, allowed classification into normal and expected abnormal eLAR groups. Using univariate and multivariate analysis we studied the variability of cR1 parameters and their differences between the two groups.

RESULTS: In both groups, cR1 latencies had coefficients of variation of <2%. In the abnormal group, cR1 had longer latencies, required higher activation currents and was more frequently desynchronized and unsustained; cR2 was more frequently absent.

CONCLUSIONS: cR1 latencies show high analytical precision for measurements. Delayed onset, difficult to elicit, desynchronized and unsustained cR1, and absence of cR2 signal an abnormal eLAR.

SIGNIFICANCE: Understanding the variability and behavior of normal and abnormal eLAR under IGA can aid in the interpretation of its changes during monitoring.

Stegmann, Gabriela, Chelsea Krantsevich, Julie Liss, Sherman Charles, Meredith Bartlett, Jeremy Shefner, Seward Rutkove, Kan Kawabata, Tanya Talkar, and Visar Berisha. (2024) 2024. “Automated Speech Analytics in ALS: Higher Sensitivity of Digital Articulatory Precision over the ALSFRS-R.”. Amyotrophic Lateral Sclerosis & Frontotemporal Degeneration, 1-9. https://doi.org/10.1080/21678421.2024.2371986.

Objective: Although studies have shown that digital measures of speech detected ALS speech impairment and correlated with the ALSFRS-R speech item, no study has yet compared their performance in detecting speech changes. In this study, we compared the performances of the ALSFRS-R speech item and an algorithmic speech measure in detecting clinically important changes in speech. Importantly, the study was part of a FDA submission which received the breakthrough device designation for monitoring ALS; we provide this paper as a roadmap for validating other speech measures for monitoring disease progression. Methods: We obtained ALSFRS-R speech subscores and speech samples from participants with ALS. We computed the minimum detectable change (MDC) of both measures; using clinician-reported listener effort and a perceptual ratings of severity, we calculated the minimal clinically important difference (MCID) of each measure with respect to both sets of clinical ratings. Results: For articulatory precision, the MDC (.85) was lower than both MCID measures (2.74 and 2.28), and for the ALSFRS-R speech item, MDC (.86) was greater than both MCID measures (.82 and .72), indicating that while the articulatory precision measure detected minimal clinically important differences in speech, the ALSFRS-R speech item did not. Conclusion: The results demonstrate that the digital measure of articulatory precision effectively detects clinically important differences in speech ratings, outperforming the ALSFRS-R speech item. Taken together, the results herein suggest that this speech outcome is a clinically meaningful measure of speech change.

2023

Chrzanowski, Stephen M, Janice A Nagy, Sarbesh Pandeya, and Seward B Rutkove. (2023) 2023. “Electrical Impedance Myography Correlates With Functional Measures of Disease Progression in D2-Mdx Mice and Boys With Duchenne Muscular Dystrophy.”. Journal of Neuromuscular Diseases 10 (1): 81-90. https://doi.org/10.3233/JND-210787.

BACKGROUND: Sensitive, objective, and longitudinal outcome measures applicable to both pre-clinical and clinical interventions are needed to assess muscle health in Duchenne muscular dystrophy (DMD). Electrical impedance myography (EIM) has the potential to non-invasively measure disease progression in mice and boys with DMD.

OBJECTIVE: We sought to evaluate how electrical impedance values (i.e., phase, reactance, and resistance) correlate to established measures of disease in both D2-mdx and wild type (WT) mice and boys with and without DMD.

METHODS: Histological, functional, and EIM data collected from previous studies of WT and D2-mdx mice at 6, 13, 21 and 43 weeks of age were reanalyzed. In parallel, previously collected functional outcome measures and EIM values were reanalyzed from boys with and without DMD at four different age groups from 2 to 14 years old.

RESULTS: In mice, disease progression as detected by histological, functional, and EIM measures, was appreciable over this time period and grip strength best correlated to longitudinal phase and reactance impedance values. In boys, disease progression quantified through commonly utilized functional outcome measures was significant and longitudinal phase demonstrated the strongest correlation with functional outcome measures.

CONCLUSION: Similar changes in EIM values, specifically in longitudinal reactance and phase, were found to show significant correlations to functional measures in both mice and boys. Thus, EIM demonstrates applicability in both pre-clinical and clinical settings and can be used as a safe, non-invasive, and longitudinal proxy biomarker to assess muscle health in DMD.

Colella, Micol, Daniel Z Press, Rebecca M Laher, Courtney E McIlduff, Seward B Rutkove, Antonino M Cassarà, Francesca Apollonio, Alvaro Pascual-Leone, Micaela Liberti, and Giorgio Bonmassar. (2023) 2023. “A Study of Flex Miniaturized Coils for Focal Nerve Magnetic Stimulation.”. Medical Physics 50 (3): 1779-92. https://doi.org/10.1002/mp.16148.

BACKGROUND: Peripheral magnetic stimulation (PMS) is emerging as a complement to standard electrical stimulation (ES) of the peripheral nervous system (PNS). PMS may stimulate sensory and motor nerve fibers without the discomfort associated with the ES used for standard nerve conduction studies. The PMS coils are the same ones used in transcranial magnetic stimulation (TMS) and lack focality and selectiveness in the stimulation.

PURPOSE: This study presents a novel coil for PMS, developed using Flexible technologies, and characterized by reduced dimensions for a precise and controlled targeting of peripheral nerves.

METHODS: We performed hybrid electromagnetic (EM) and electrophysiological simulations to study the EM exposure induced by a novel miniaturized coil (or mcoil) in and around the radial nerve of the neuro-functionalized virtual human body model Yoon-Sun, and to estimate the current threshold to induce magnetic stimulation (MS) of the radial nerve. Eleven healthy subjects were studied with the mcoil, which consisted of two 15 mm diameter coils in a figure-of-eight configuration, each with a hundred turns of a 25 μm copper-clad four-layer foil. Sensory nerve action potentials (SNAPs) were measured in each subject using two electrodes and compared with those obtained from standard ES. The SNAPs conduction velocities were estimated as a performance metric.

RESULTS: The induced electric field was estimated numerically to peak at a maximum intensity of 39 V/m underneath the mcoil fed by 70 A currents. In such conditions, the electrophysiological simulations suggested that the mcoil elicits SNAPs originating at 7 mm from the center of the mcoil. Furthermore, the numerically estimated latencies and waveforms agreed with those obtained during the PMS experiments on healthy subjects, confirming the ability of the mcoil to stimulate the radial nerve sensory fibers.

CONCLUSION: Hybrid EM-electrophysiological simulations assisted the development of a miniaturized coil with a small diameter and a high number of turns using flexible electronics. The numerical dosimetric analysis predicted the threshold current amplitudes required for a suprathreshold peripheral nerve sensory stimulation, which was experimentally confirmed. The developed and now validated computational pipeline will be used to improve the performances (e.g., focality and minimal currents) of new generations of mcoil designs.

Rosa-Caldwell, Megan E, Kamryn T Eddy, Seward B Rutkove, and Lauren Breithaupt. (2023) 2023. “Anorexia Nervosa and Muscle Health: A Systematic Review of Our Current Understanding and Future Recommendations for Study.”. The International Journal of Eating Disorders 56 (3): 483-500. https://doi.org/10.1002/eat.23878.

OBJECTIVE: Conduct a systematic review on muscle size and strength in individuals with anorexia nervosa (AN).

METHOD: In accordance with PRISMA guidelines, we searched Pubmed for articles published between 1995 and 2022 using a combination of search terms related to AN and muscle size, strength, or metabolism. After two authors screened articles and extracted data, 30 articles met inclusion criteria. Data were coded, and a risk bias was conducted for each study.

RESULTS: The majority of studies focused on muscle size/lean mass (60%, n = 18) and energy expenditure (33%, n = 9), with few studies (17%, n = 5) investigating muscle function or possible mechanisms underlying muscle size (20%, n = 6). Studies supported that individuals with AN have smaller muscle size and reduced energy expenditure relative to controls. In some studies (33%, n = 10) recovery from AN was not sufficient to restore muscle mass or function. Mechanisms underlying short and long-term musculoskeletal alterations have not been thoroughly explored.

DISCUSSION: Muscle mass and strength loss may be an unexplored component of physiological deterioration during and after AN. More research is necessary to understand intramuscular alterations during AN and interventions to facilitate muscle mass and functional gain following weight restoration in AN.

PUBLIC SIGNIFICANCE: Muscle health is important for optimal health and is reduced in individuals with AN. However, we do not understand how muscle is altered at the cellular level throughout the course of AN. Here we review what is currently known regarding muscle health during AN and with weight restoration.

Xia, Chuying, Saranya Suriyanarayanan, Yi Gong, Vera Fridman, Martin Selig, Jia Li, Seward Rutkove, Thorsten Hornemann, and Florian Eichler. (2023) 2023. “Long-Term Effects of L-Serine Supplementation Upon a Mouse Model of Diabetic Neuropathy.”. Journal of Diabetes and Its Complications 37 (2): 108383. https://doi.org/10.1016/j.jdiacomp.2022.108383.

Deoxysphingolipids (1-deoxySLs) are neurotoxic sphingolipids associated with obesity and diabetic neuropathy (DN) and have been linked to severity of functional peripheral neuropathies. While l-serine supplementation can reduce 1-deoxySL accumulation and improve insulin sensitivity and sensory nerve velocity, long-term outcomes have not yet been examined. To assess this, we treated 2 month old db/db mice, a model of DN, with 5-20 % oral l-serine for 6 months and longitudinally quantified the extent of functional neuropathy progression. We examined putative biomarkers of neuropathy in blood and tissue and quantified levels of small fiber neuropathy, looking for associations between lowered 1-deoxySL and phenotypes. Toxic 1-deoxySLs were suppressed long-term in plasma and various tissue including the sciatic nerve, which is particularly targeted in DN. Functional neuropathy and sensory modalities were significantly improved in the treatment group well into advanced stages of disease. However, structural assessments revealed prominent axonal degeneration, apoptosis and Schwann cell pathology, suggesting that neuropathy was ongoing. Hyperglycemia and dyslipidemia persisted during our study, and high levels of glutathione were seen in the spinal cord. Our results demonstrate that despite significant functional improvements, l-serine does not prevent chronic degenerative changes specifically at the structural level, pointing to other processes such as oxidative damage and hyperglycemia, that persist despite 1-deoxySL reduction.

Rutkove, Seward B, Santiago Callegari, Holly Concepcion, Tyler Mourey, Jeffrey Widrick, Janice A Nagy, and Anjali K Nath. (2023) 2023. “Electrical Impedance Myography Detects Age-Related Skeletal Muscle Atrophy in Adult Zebrafish.”. Scientific Reports 13 (1): 7191. https://doi.org/10.1038/s41598-023-34119-6.

Age-related deficits in skeletal muscle function, termed sarcopenia, are due to loss of muscle mass and changes in the intrinsic mechanisms underlying contraction. Sarcopenia is associated with falls, functional decline, and mortality. Electrical impedance myography (EIM)-a minimally invasive, rapid electrophysiological tool-can be applied to animals and humans to monitor muscle health, thereby serving as a biomarker in both preclinical and clinical studies. EIM has been successfully employed in several species; however, the application of EIM to the assessment of zebrafish-a model organism amenable to high-throughput experimentation-has not been reported. Here, we demonstrated differences in EIM measures between the skeletal muscles of young (6 months of age) and aged (33 months of age) zebrafish. For example, EIM phase angle and reactance at 2 kHz showed significantly decreased phase angle (5.3 ± 2.1 versus 10.7 ± 1.5°; p = 0.001) and reactance (89.0 ± 3.9 versus 172.2 ± 54.8 ohms; p = 0.007) in aged versus young animals. Total muscle area, in addition to other morphometric features, was also strongly correlated to EIM 2 kHz phase angle across both groups (r = 0.7133, p = 0.01). Moreover, there was a strong correlation between 2 kHz phase angle and established metrics of zebrafish swimming performance, including turn angle, angular velocity, and lateral motion (r = 0.7253, r = 0.7308, r = 0.7857, respectively, p < 0.01 for all). In addition, the technique was shown to have high reproducibility between repeated measurements with a mean percentage difference of 5.34 ± 1.17% for phase angle. These relationships were also confirmed in a separate replication cohort. Together, these findings establish EIM as a fast, sensitive method for quantifying zebrafish muscle function and quality. Moreover, identifying the abnormalities in the bioelectrical properties of sarcopenic zebrafish provides new opportunities to evaluate potential therapeutics for age-related neuromuscular disorders and to interrogate the disease mechanisms of muscle degeneration.