Publications

2013

Chen, Sen, Xinnong Jiang, Christina A Gewinner, John M Asara, Nicholas I Simon, Changmeng Cai, Lewis C Cantley, and Steven P Balk. (2013) 2013. “Tyrosine Kinase BMX Phosphorylates Phosphotyrosine-Primed Motif Mediating the Activation of Multiple Receptor Tyrosine Kinases.”. Science Signaling 6 (277): ra40. https://doi.org/10.1126/scisignal.2003936.

The nonreceptor tyrosine kinase BMX (bone marrow tyrosine kinase gene on chromosome X) is abundant in various cell types and activated downstream of phosphatidylinositol-3 kinase (PI3K) and the kinase Src, but its substrates are unknown. Positional scanning peptide library screening revealed a marked preference for a priming phosphorylated tyrosine (pY) in the -1 position, indicating that BMX substrates may include multiple tyrosine kinases that are fully activated by pYpY sites in the kinase domain. BMX phosphorylated focal adhesion kinase (FAK) at Tyr⁵⁷⁷ subsequent to its Src-mediated phosphorylation at Tyr⁵⁷⁶. Loss of BMX by RNA interference or by genetic deletion in mouse embryonic fibroblasts (MEFs) markedly impaired FAK activity. Phosphorylation of the insulin receptor in the kinase domain at Tyr¹¹⁸⁹ and Tyr¹¹⁹⁰, as well as Tyr¹¹⁸⁵, and downstream phosphorylation of the kinase AKT at Thr³⁰⁸ were similarly impaired by BMX deficiency. However, insulin-induced phosphorylation of AKT at Ser⁴⁷³ was not impaired in Bmx knockout MEFs or liver tissue from Bmx knockout mice, which also showed increased insulin-stimulated glucose uptake, possibly because of decreased abundance of the phosphatase PHLPP (PH domain leucine-rich repeat protein phosphatase). Thus, by identifying the pYpY motif as a substrate for BMX, our findings suggest that BMX functions as a central regulator among multiple signaling pathways mediated by tyrosine kinases.

Sowalsky, Adam G, Huihui Ye, Glenn J Bubley, and Steven P Balk. (2013) 2013. “Clonal Progression of Prostate Cancers from Gleason Grade 3 to Grade 4.”. Cancer Research 73 (3): 1050-5. https://doi.org/10.1158/0008-5472.CAN-12-2799.

Low-grade prostate cancers (Gleason pattern 3, G3) detected on needle biopsies are generally viewed as indolent and suitable for conservative management with only interval repeat biopsies to monitor by watchful waiting. Higher grade tumors eventually emerge in 20% to 30% of these cases, but this process may only reflect incomplete sampling on the initial biopsy, such that it remains unknown whether G3 tumors generally progress to higher grades. In this study, we examined a series of adjacent G3 and Gleason pattern 4 (G4) tumors in radical prostatectomy specimens and found that all were concordant for the TMPRSS2:ERG gene fusion. Using hybrid-capture and deep sequencing in four fusion-positive cases, we found that adjacent laser-capture microdissected G3 and G4 tumors had identical TMPRSS2:ERG fusion breakpoints, confirming their clonal origin. Two of these G3 tumors had deletion of a single PTEN gene that was also deleted in the adjacent G4, while the G4 tumors in two cases had additional PTEN losses. These findings establish that a subset of G3 tumors progress to G4 or emerge from a common precursor. Further, they show that G3 tumors that progress to G4 may have molecular features distinguishing them from G3 tumors that do not progress. Thus, determining the spectrum of these genetic or epigenetic features may allow for the identification of G3 tumors on needle biopsies that are truly indolent versus those that have the potential to progress or that may already be associated with a G4 tumor that was not sampled at the initial biopsy, therefore, requiring more aggressive surveillance or intervention.

2012

Chen, Shaoyong, Sarah Gulla, Changmeng Cai, and Steven P Balk. (2012) 2012. “Androgen Receptor Serine 81 Phosphorylation Mediates Chromatin Binding and Transcriptional Activation.”. The Journal of Biological Chemistry 287 (11): 8571-83. https://doi.org/10.1074/jbc.M111.325290.

Our previous findings indicated that androgen receptor (AR) phosphorylation at serine 81 is stimulated by the mitotic cyclin-dependent kinase 1 (CDK1). In this report, we extended our previous study and confirmed that Ser-81 phosphorylation increases during mitosis, coincident with CDK1 activation. We further showed blocking cell cycle at G(1) or S phase did not disrupt androgen-induced Ser-81 phosphorylation and AR-dependent transcription, consistent with a recent report that AR was phosphorylated at Ser-81 and activated by the transcriptional CDK9. To assess the function of Ser-81 phosphorylation in prostate cancer (PCa) cells expressing endogenous AR, we developed a ligand switch strategy using a ligand-binding domain mutation (W741C) that renders AR responsive to the antagonist bicalutamide. An S81A/W741C double mutant AR stably expressed in PCa cells failed to transactivate the endogenous AR-regulated PSA or TMPRSS2 genes. ChIP showed that the S81A mutation prevented ligand-induced AR recruitment to these genes, and cellular fractionation revealed that the S81A mutation globally abrogated chromatin binding. Conversely, the AR fraction rapidly recruited to chromatin after androgen stimulation was highly enriched for Ser-81 phosphorylation. Finally, inhibition of CDK1 and CDK9 decreased AR Ser-81 phosphorylation, chromatin binding, and transcriptional activity. These findings indicate that Ser-81 phosphorylation by CDK9 stabilizes AR chromatin binding for transcription and suggest that CDK1-mediated Ser-81 phosphorylation during mitosis provides a pool of Ser-81 phosphorylation AR that can be readily recruited to chromatin for gene reactivation and may enhance AR activity in PCa.

2011

Cai, Changmeng, and Steven P Balk. (2011) 2011. “Intratumoral Androgen Biosynthesis in Prostate Cancer Pathogenesis and Response to Therapy.”. Endocrine-Related Cancer 18 (5): R175-82. https://doi.org/10.1530/ERC-10-0339.

The majority of prostate cancers (PCa) express high levels of androgen receptor (AR) and are dependent for their growth on testosterone produced by the testes, which is reduced in the prostate to the higher affinity ligand 5α-dihydrotestosterone (DHT). PCa growth can be suppressed by androgen deprivation therapy, which involves removal of testicular androgens (surgical or medical castration) or treatment with an AR antagonist (or a combination of both), but patients invariably relapse with tumors that have been termed castration recurrent/resistant PCa (CRPC). Importantly, AR transcriptional activity becomes reactivated at this CRPC stage of the disease and remains essential for tumor growth. The objective of this review is to outline one clinically important mechanism contributing to this AR reactivation, which is increased intratumoral synthesis of testosterone and DHT from weak androgens produced by the adrenal glands and possibly de novo from cholesterol. Early studies showed that a substantial fraction of CRPC patients responded to adrenalectomy or medical suppression of adrenal androgen synthesis using agents such as ketoconazole (CYP17A1 inhibitor), and a recent phase III study of a more potent and selective CYP17A1 inhibitor (abiraterone) has demonstrated an improvement in survival. With the pending FDA approval of abiraterone for CRPC, defining the molecular mechanisms contributing to CYP17A1 inhibitor resistance/relapse and AR reactivation is now critical to build on these advances.

Exley, Mark A, Lydia Lynch, Bindu Varghese, Michael Nowak, Nadia Alatrakchi, and Steven P Balk. (2011) 2011. “Developing Understanding of the Roles of CD1d-Restricted T Cell Subsets in Cancer: Reversing Tumor-Induced Defects.”. Clinical Immunology (Orlando, Fla.) 140 (2): 184-95. https://doi.org/10.1016/j.clim.2011.04.017.

Invariant natural killer T-cells ('iNKT') are the best-known CD1d-restricted T-cells, with recently-defined roles in controlling adaptive immunity. CD1d-restricted T-cells can rapidly produce large amounts of Th1 and/or Th2//Treg/Th17-type cytokines, thereby regulating immunity. iNKT can stimulate potent anti-tumor immune responses via production of Th1 cytokines, direct cytotoxicity, and activation of effectors. However, Th2//Treg-type iNKT can inhibit anti-tumor activity. Furthermore, iNKT are decreased and/or reversibly functionally impaired in many advanced cancers. In some cases, CD1d-restricted T-cell cancer defects can be traced to CD1d(+) tumor interactions, since hematopoietic, prostate, and some other tumors can express CD1d. Ligand and IL-12 can reverse iNKT defects and therapeutic opportunities exist in correcting such defects alone and in combination. Early stage clinical trials have shown potential for reconstitution of iNKT IFN-gamma responses and evidence of activity in a subset of patients, with rational new approaches to capitalize on this progress ongoing, as will be discussed here.

Cai, Changmeng, Sen Chen, Patrick Ng, Glenn J Bubley, Peter S Nelson, Elahe A Mostaghel, Brett Marck, et al. (2011) 2011. “Intratumoral de Novo Steroid Synthesis Activates Androgen Receptor in Castration-Resistant Prostate Cancer and Is Upregulated by Treatment With CYP17A1 Inhibitors.”. Cancer Research 71 (20): 6503-13. https://doi.org/10.1158/0008-5472.CAN-11-0532.

Relapse of castration-resistant prostate cancer (CRPC) that occurs after androgen deprivation therapy of primary prostate cancer can be mediated by reactivation of the androgen receptor (AR). One important mechanism mediating this AR reactivation is intratumoral conversion of the weak adrenal androgens DHEA and androstenedione into the AR ligands testosterone and dihydrotestosterone. DHEA and androstenedione are synthesized by the adrenals through the sequential actions of the cytochrome P450 enzymes CYP11A1 and CYP17A1, so that CYP17A1 inhibitors such as abiraterone are effective therapies for CRPC. However, the significance of intratumoral CYP17A1 and de novo androgen synthesis from cholesterol in CRPC, and the mechanisms contributing to CYP17A1 inhibitor resistance/relapse, remain to be determined. We report that AR activity in castration-resistant VCaP tumor xenografts can be restored through CYP17A1-dependent de novo androgen synthesis, and that abiraterone treatment of these xenografts imposes selective pressure for increased intratumoral expression of CYP17A1, thereby generating a mechanism for development of resistance to CYP17A1 inhibitors. Supporting the clinical relevance of this mechanism, we found that intratumoral expression of CYP17A1 was markedly increased in tumor biopsies from CRPC patients after CYP17A1 inhibitor therapy. We further show that CRPC cells expressing a progesterone responsive T877A mutant AR are not CYP17A1 dependent, but that AR activity in these cells is still steroid dependent and mediated by upstream CYP11A1-dependent intraturmoral pregnenolone/progesterone synthesis. Together, our results indicate that CRPCs resistant to CYP17A1 inhibition may remain steroid dependent and therefore responsive to therapies that can further suppress de novo intratumoral steroid synthesis.

Cai, Changmeng, Housheng Hansen He, Sen Chen, Ilsa Coleman, Hongyun Wang, Zi Fang, Shaoyong Chen, et al. (2011) 2011. “Androgen Receptor Gene Expression in Prostate Cancer Is Directly Suppressed by the Androgen Receptor through Recruitment of Lysine-Specific Demethylase 1.”. Cancer Cell 20 (4): 457-71. https://doi.org/10.1016/j.ccr.2011.09.001.

Androgen receptor (AR) is reactivated in castration-resistant prostate cancer (CRPC) through mechanisms including marked increases in AR gene expression. We identify an enhancer in the AR second intron contributing to increased AR expression at low androgen levels in CRPC. Moreover, at increased androgen levels, the AR binds this site and represses AR gene expression through recruitment of lysine-specific demethylase 1 (LSD1) and H3K4me1,2 demethylation. AR similarly represses expression of multiple genes mediating androgen synthesis, DNA synthesis, and proliferation while stimulating genes mediating lipid and protein biosynthesis. Androgen levels in CRPC appear adequate to stimulate AR activity on enhancer elements, but not suppressor elements, resulting in increased expression of AR and AR repressed genes that contribute to cellular proliferation.

2010

Jiang, Xinnong, Sen Chen, John M Asara, and Steven P Balk. (2010) 2010. “Phosphoinositide 3-Kinase Pathway Activation in Phosphate and Tensin Homolog (PTEN)-Deficient Prostate Cancer Cells Is Independent of Receptor Tyrosine Kinases and Mediated by the P110beta and P110delta Catalytic Subunits.”. The Journal of Biological Chemistry 285 (20): 14980-89. https://doi.org/10.1074/jbc.M109.085696.

Class IA phosphoinositide 3-kinase (PI3K) p110 catalytic subunits are activated upon Src homology 2 domain-mediated binding of their p85 regulatory subunits to tyrosine-phosphorylated pYXXM motifs in receptor tyrosine kinases (RTKs) or adaptor proteins. The PI3K pathway is activated by phosphate and tensin homolog (PTEN) loss in most prostate cancers (PCa), but the contribution of upstream RTKs that may be targeted therapeutically has not been assessed. Immunoblotting of p85-associated proteins in serum-starved PTEN-deficient LNCaP and C4-2 PCa cells showed a small set of discrete tyrosine-phosphorylated proteins, but these proteins were not recognized by an anti-pYXXM motif antibody and were not found in PTEN-deficient PC3 PCa cells. LC/MS/MS using label-free proteomics and immunoblotting showed that p85 was associated primarily with p110beta and p110delta. An interaction with ErbB3 was also detected but was independent of ErbB3 tyrosine phosphorylation and was not required for basal PI3K activity. Basal tyrosine phosphorylation of p110beta and p110delta could be blocked by c-Src inhibitors, but this did not suppress PI3K activity, which was similarly independent of Ras. Basal PI3K activity was mediated by p110beta in PC3 cells and by both p110beta and p110delta in LNCaP cells, whereas p110alpha was required for PI3K activation in response to RTK stimulation by heregulin-beta1. These findings show that basal PI3K activity in PTEN-deficient PCa cells is RTK-independent and can be mediated by p110beta and p110delta. Increased p110beta expression in PCa may be required for RTK-independent PI3K pathway activation in adult prostate epithelium with genetic or epigenetic PTEN down-regulation.

Exley, Mark A, Brian Wilson, and Steven P Balk. (2010) 2010. “Isolation and Functional Use of Human NKT Cells.”. Current Protocols in Immunology Chapter 14: Unit 14.11. https://doi.org/10.1002/0471142735.im1411s90.

This unit details methods for the isolation, in vitro expansion, and functional characterization of human iNKT cells. The term iNKT derives from the fact that a large fraction of murine NKT cells recognize the MHC class I-like CD1d protein, are CD4+ or CD4-CD8- (double negative), and use an identical "invariant" TCRalpha chain, which is generated by precise Valpha14 and Jalpha281 (now renamed Jalpha18) rearrangements with either no N-region diversity or subsequent trimming to nearly identical amino-acid sequence (hence, 'iNKT'). Basic Protocol 1 and Alternate Protocol 1 use multi-color FACS analysis to identify and quantitate rare iNKT cells from human samples. Basic Protocol 2 describes iNKT cell purification. Alternate Protocol 2 describes a method for high-speed FACS sorting of iNKT cells. Alternate Protocol 3 employs a cell sorting approach to isolate iNKT cell clones. A Support Protocol for secondary stimulation and rapid expansion of iNKT cells is also included. Basic Protocol 3 explains functional analysis of iNKT.

2009

Yuan, Xin, and Steven P Balk. (2009) 2009. “Mechanisms Mediating Androgen Receptor Reactivation After Castration.”. Urologic Oncology 27 (1): 36-41. https://doi.org/10.1016/j.urolonc.2008.03.021.

Androgen deprivation is still the standard systemic therapy for metastatic prostate cancer (PCa), but patients invariably relapse with a more aggressive form of PCa termed hormone refractory, androgen independent, or castration resistant PCa (CRPC). Significantly, the androgen receptor (AR) is expressed at high levels in most cases of CRPC, and these tumors resume their expression of multiple AR-regulated genes, indicating that AR transcriptional activity becomes reactivated at this stage of the disease. The molecular basis for this AR reactivation remains unclear, but possible mechanisms include increased AR expression, AR mutations that enhance activation by weak androgens and AR antagonists, increased expression of transcriptional coactivator proteins, and activation of signal transduction pathways that can enhance AR responses to low levels of androgens. Recent data indicate that CRPC cells may also carry out intracellular synthesis of testosterone and DHT from weak adrenal androgens and may be able to synthesize androgens from cholesterol. These mechanisms that appear to contribute to AR reactivation after castration are further outlined in this review.