2022

Khan AT, Gogarten SM, McHugh CP, Stilp AM, Sofer T, Bowers ML, et al. Recommendations on the use and reporting of race, ethnicity, and ancestry in genetic research: Experiences from the NHLBI TOPMed program.. Cell genomics. 2022;2(8).

How race, ethnicity, and ancestry are used in genomic research has wide-ranging implications for how research is translated into clinical care and incorporated into public understanding. Correlation between race and genetic ancestry contributes to unresolved complexity for the scientific community, as illustrated by heterogeneous definitions and applications of these variables. Here, we offer commentary and recommendations on the use of race, ethnicity, and ancestry across the arc of genetic research, including data harmonization, analysis, and reporting. While informed by our experiences as researchers affiliated with the NHLBI Trans-Omics for Precision Medicine (TOPMed) program, these recommendations are applicable to basic and translational genomic research in diverse populations with genome-wide data. Moving forward, considerable collaborative effort will be required to ensure that race, ethnicity, and ancestry are described and used appropriately to generate scientific knowledge that yields broad and equitable benefit.

2019

Grinde KE, Qi Q, Thornton TA, Liu S, Shadyab AH, Chan KHK, et al. Generalizing polygenic risk scores from Europeans to Hispanics/Latinos.. Genetic epidemiology. 2019;43(1):50-62.

Polygenic risk scores (PRSs) are weighted sums of risk allele counts of single-nucleotide polymorphisms (SNPs) associated with a disease or trait. PRSs are typically constructed based on published results from Genome-Wide Association Studies (GWASs), and the majority of which has been performed in large populations of European ancestry (EA) individuals. Although many genotype-trait associations have generalized across populations, the optimal choice of SNPs and weights for PRSs may differ between populations due to different linkage disequilibrium (LD) and allele frequency patterns. We compare various approaches for PRS construction, using GWAS results from both large EA studies and a smaller study in Hispanics/Latinos: The Hispanic Community Health Study/Study of Latinos (HCHS/SOL, n = 12 , 803 ). We consider multiple approaches for selecting SNPs and for computing SNP weights. We study the performance of the resulting PRSs in an independent study of Hispanics/Latinos from the Women's Health Initiative (WHI, n = 3 , 582 ). We support our investigation with simulation studies of potential genetic architectures in a single locus. We observed that selecting variants based on EA GWASs generally performs well, except for blood pressure trait. However, the use of EA GWASs for weight estimation was suboptimal. Using non-EA GWAS results to estimate weights improved results.

2016

Conomos MP, Laurie CA, Stilp AM, Gogarten SM, McHugh CP, Nelson SC, et al. Genetic Diversity and Association Studies in US Hispanic/Latino Populations: Applications in the Hispanic Community Health Study/Study of Latinos.. American journal of human genetics. 2016;98(1):165-84.

US Hispanic/Latino individuals are diverse in genetic ancestry, culture, and environmental exposures. Here, we characterized and controlled for this diversity in genome-wide association studies (GWASs) for the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). We simultaneously estimated population-structure principal components (PCs) robust to familial relatedness and pairwise kinship coefficients (KCs) robust to population structure, admixture, and Hardy-Weinberg departures. The PCs revealed substantial genetic differentiation within and among six self-identified background groups (Cuban, Dominican, Puerto Rican, Mexican, and Central and South American). To control for variation among groups, we developed a multi-dimensional clustering method to define a "genetic-analysis group" variable that retains many properties of self-identified background while achieving substantially greater genetic homogeneity within groups and including participants with non-specific self-identification. In GWASs of 22 biomedical traits, we used a linear mixed model (LMM) including pairwise empirical KCs to account for familial relatedness, PCs for ancestry, and genetic-analysis groups for additional group-associated effects. Including the genetic-analysis group as a covariate accounted for significant trait variation in 8 of 22 traits, even after we fit 20 PCs. Additionally, genetic-analysis groups had significant heterogeneity of residual variance for 20 of 22 traits, and modeling this heteroscedasticity within the LMM reduced genomic inflation for 19 traits. Furthermore, fitting an LMM that utilized a genetic-analysis group rather than a self-identified background group achieved higher power to detect previously reported associations. We expect that the methods applied here will be useful in other studies with multiple ethnic groups, admixture, and relatedness.