Benchmarking association analyses of continuous exposures with RNA-seq in observational studies.

Sofer T, Kurniansyah N, Aguet F, Ardlie K, Durda P, Nickerson DA, et al. Benchmarking association analyses of continuous exposures with RNA-seq in observational studies.. Briefings in bioinformatics. 2021;22(6).

Abstract

Large datasets of hundreds to thousands of individuals measuring RNA-seq in observational studies are becoming available. Many popular software packages for analysis of RNA-seq data were constructed to study differences in expression signatures in an experimental design with well-defined conditions (exposures). In contrast, observational studies may have varying levels of confounding transcript-exposure associations; further, exposure measures may vary from discrete (exposed, yes/no) to continuous (levels of exposure), with non-normal distributions of exposure. We compare popular software for gene expression-DESeq2, edgeR and limma-as well as linear regression-based analyses for studying the association of continuous exposures with RNA-seq. We developed a computation pipeline that includes transformation, filtering and generation of empirical null distribution of association P-values, and we apply the pipeline to compute empirical P-values with multiple testing correction. We employ a resampling approach that allows for assessment of false positive detection across methods, power comparison and the computation of quantile empirical P-values. The results suggest that linear regression methods are substantially faster with better control of false detections than other methods, even with the resampling method to compute empirical P-values. We provide the proposed pipeline with fast algorithms in an R package Olivia, and implemented it to study the associations of measures of sleep disordered breathing with RNA-seq in peripheral blood mononuclear cells in participants from the Multi-Ethnic Study of Atherosclerosis.

Last updated on 03/26/2024
PubMed