Publications by Year: 2019

2019

Bryan MS, Sofer T, Mossavar-Rahmani Y, Thyagarajan B, Zeng D, Daviglus ML, et al. Mendelian randomization of inorganic arsenic metabolism as a risk factor for hypertension- and diabetes-related traits among adults in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL) cohort.. International journal of epidemiology. 2019;48(3):876-8.

BACKGROUND: Hypertension and diabetes have been associated with inefficient arsenic metabolism, primarily through studies undertaken in populations exposed through drinking water. Recently, rice has been recognized as a source of arsenic exposure, but it remains unclear whether populations with high rice consumption but no known water exposure are at risk for the health problems associated with inefficient arsenic metabolism.

METHODS: The relationships between arsenic metabolism efficiency (% inorganic arsenic, % monomethylarsenate and % dimethylarsinate in urine) and three hypertension- and seven diabetes-related traits were estimated among 12 609 participants of the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). A two-sample Mendelian randomization approach incorporated genotype-arsenic metabolism relationships from literature, and genotype-trait relationships from HCHS/SOL, with a mixed-effect linear model. Analyses were stratified by rice consumption and smoking.

RESULTS: Among never smokers with high rice consumption, each percentage point increase in was associated with increases of 1.96 mmHg systolic blood pressure (P = 0.034) and 1.85 mmHg inorganic arsenic diastolic blood pressure (P = 0.003). Monomethylarsenate was associated with increased systolic (1.64 mmHg/percentage point increase; P = 0.021) and diastolic (1.33 mmHg/percentage point increase; P = 0.005) blood pressure. Dimethylarsinate, a marker of efficient metabolism, was associated with lower systolic (-0.92 mmHg/percentage point increase; P = 0.025) and diastolic (-0.79 mmHg/percentage point increase; P = 0.004) blood pressure. Among low rice consumers and ever smokers, the results were consistent with no association. Evidence for a relationship with diabetes was equivocal.

CONCLUSIONS: Less efficient arsenic metabolism was associated with increased blood pressure among never smokers with high rice consumption, suggesting that arsenic exposure through rice may contribute to high blood pressure in the Hispanic/Latino community.

Shungin D, Haworth S, Divaris K, Agler CS, Kamatani Y, Lee MK, et al. Genome-wide analysis of dental caries and periodontitis combining clinical and self-reported data.. Nature communications. 2019;10(1):2773.

Dental caries and periodontitis account for a vast burden of morbidity and healthcare spending, yet their genetic basis remains largely uncharacterized. Here, we identify self-reported dental disease proxies which have similar underlying genetic contributions to clinical disease measures and then combine these in a genome-wide association study meta-analysis, identifying 47 novel and conditionally-independent risk loci for dental caries. We show that the heritability of dental caries is enriched for conserved genomic regions and partially overlapping with a range of complex traits including smoking, education, personality traits and metabolic measures. Using cardio-metabolic traits as an example in Mendelian randomization analysis, we estimate causal relationships and provide evidence suggesting that the processes contributing to dental caries may have undesirable downstream effects on health.

Grinde KE, Qi Q, Thornton TA, Liu S, Shadyab AH, Chan KHK, et al. Generalizing polygenic risk scores from Europeans to Hispanics/Latinos.. Genetic epidemiology. 2019;43(1):50-62.

Polygenic risk scores (PRSs) are weighted sums of risk allele counts of single-nucleotide polymorphisms (SNPs) associated with a disease or trait. PRSs are typically constructed based on published results from Genome-Wide Association Studies (GWASs), and the majority of which has been performed in large populations of European ancestry (EA) individuals. Although many genotype-trait associations have generalized across populations, the optimal choice of SNPs and weights for PRSs may differ between populations due to different linkage disequilibrium (LD) and allele frequency patterns. We compare various approaches for PRS construction, using GWAS results from both large EA studies and a smaller study in Hispanics/Latinos: The Hispanic Community Health Study/Study of Latinos (HCHS/SOL, n = 12 , 803 ). We consider multiple approaches for selecting SNPs and for computing SNP weights. We study the performance of the resulting PRSs in an independent study of Hispanics/Latinos from the Women's Health Initiative (WHI, n = 3 , 582 ). We support our investigation with simulation studies of potential genetic architectures in a single locus. We observed that selecting variants based on EA GWASs generally performs well, except for blood pressure trait. However, the use of EA GWASs for weight estimation was suboptimal. Using non-EA GWAS results to estimate weights improved results.

Bryan MS, Sofer T, Mossavar-Rahmani Y, Thyagarajan B, Zeng D, Daviglus ML, et al. Mendelian randomization of inorganic arsenic metabolism as a risk factor for hypertension- and diabetes-related traits among adults in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL) cohort.. International journal of epidemiology. 2019;48(3):876-8.

BACKGROUND: Hypertension and diabetes have been associated with inefficient arsenic metabolism, primarily through studies undertaken in populations exposed through drinking water. Recently, rice has been recognized as a source of arsenic exposure, but it remains unclear whether populations with high rice consumption but no known water exposure are at risk for the health problems associated with inefficient arsenic metabolism.

METHODS: The relationships between arsenic metabolism efficiency (% inorganic arsenic, % monomethylarsenate and % dimethylarsinate in urine) and three hypertension- and seven diabetes-related traits were estimated among 12 609 participants of the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). A two-sample Mendelian randomization approach incorporated genotype-arsenic metabolism relationships from literature, and genotype-trait relationships from HCHS/SOL, with a mixed-effect linear model. Analyses were stratified by rice consumption and smoking.

RESULTS: Among never smokers with high rice consumption, each percentage point increase in was associated with increases of 1.96 mmHg systolic blood pressure (P = 0.034) and 1.85 mmHg inorganic arsenic diastolic blood pressure (P = 0.003). Monomethylarsenate was associated with increased systolic (1.64 mmHg/percentage point increase; P = 0.021) and diastolic (1.33 mmHg/percentage point increase; P = 0.005) blood pressure. Dimethylarsinate, a marker of efficient metabolism, was associated with lower systolic (-0.92 mmHg/percentage point increase; P = 0.025) and diastolic (-0.79 mmHg/percentage point increase; P = 0.004) blood pressure. Among low rice consumers and ever smokers, the results were consistent with no association. Evidence for a relationship with diabetes was equivocal.

CONCLUSIONS: Less efficient arsenic metabolism was associated with increased blood pressure among never smokers with high rice consumption, suggesting that arsenic exposure through rice may contribute to high blood pressure in the Hispanic/Latino community.

Shungin D, Haworth S, Divaris K, Agler CS, Kamatani Y, Lee MK, et al. Genome-wide analysis of dental caries and periodontitis combining clinical and self-reported data.. Nature communications. 2019;10(1):2773.

Dental caries and periodontitis account for a vast burden of morbidity and healthcare spending, yet their genetic basis remains largely uncharacterized. Here, we identify self-reported dental disease proxies which have similar underlying genetic contributions to clinical disease measures and then combine these in a genome-wide association study meta-analysis, identifying 47 novel and conditionally-independent risk loci for dental caries. We show that the heritability of dental caries is enriched for conserved genomic regions and partially overlapping with a range of complex traits including smoking, education, personality traits and metabolic measures. Using cardio-metabolic traits as an example in Mendelian randomization analysis, we estimate causal relationships and provide evidence suggesting that the processes contributing to dental caries may have undesirable downstream effects on health.

Kraja AT, Liu C, Fetterman JL, Graff M, Have CT, Gu C, et al. Associations of Mitochondrial and Nuclear Mitochondrial Variants and Genes with Seven Metabolic Traits.. American journal of human genetics. 2019;104(1):112-38.

Mitochondria (MT), the major site of cellular energy production, are under dual genetic control by 37 mitochondrial DNA (mtDNA) genes and numerous nuclear genes (MT-nDNA). In the CHARGEmtDNA+ Consortium, we studied genetic associations of mtDNA and MT-nDNA associations with body mass index (BMI), waist-hip-ratio (WHR), glucose, insulin, HOMA-B, HOMA-IR, and HbA1c. This 45-cohort collaboration comprised 70,775 (insulin) to 170,202 (BMI) pan-ancestry individuals. Validation and imputation of mtDNA variants was followed by single-variant and gene-based association testing. We report two significant common variants, one in MT-ATP6 associated (p ≤ 5E-04) with WHR and one in the D-loop with glucose. Five rare variants in MT-ATP6, MT-ND5, and MT-ND6 associated with BMI, WHR, or insulin. Gene-based meta-analysis identified MT-ND3 associated with BMI (p ≤ 1E-03). We considered 2,282 MT-nDNA candidate gene associations compiled from online summary results for our traits (20 unique studies with 31 dataset consortia's genome-wide associations [GWASs]). Of these, 109 genes associated (p ≤ 1E-06) with at least 1 of our 7 traits. We assessed regulatory features of variants in the 109 genes, cis- and trans-gene expression regulation, and performed enrichment and protein-protein interactions analyses. Of the identified mtDNA and MT-nDNA genes, 79 associated with adipose measures, 49 with glucose/insulin, 13 with risk for type 2 diabetes, and 18 with cardiovascular disease, indicating for pleiotropic effects with health implications. Additionally, 21 genes related to cholesterol, suggesting additional important roles for the genes identified. Our results suggest that mtDNA and MT-nDNA genes and variants reported make important contributions to glucose and insulin metabolism, adipocyte regulation, diabetes, and cardiovascular disease.

Kilpeläinen TO, Bentley AR, Noordam R, Sung YJ, Schwander K, Winkler TW, et al. Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity.. Nature communications. 2019;10(1):376.

Many genetic loci affect circulating lipid levels, but it remains unknown whether lifestyle factors, such as physical activity, modify these genetic effects. To identify lipid loci interacting with physical activity, we performed genome-wide analyses of circulating HDL cholesterol, LDL cholesterol, and triglyceride levels in up to 120,979 individuals of European, African, Asian, Hispanic, and Brazilian ancestry, with follow-up of suggestive associations in an additional 131,012 individuals. We find four loci, in/near CLASP1, LHX1, SNTA1, and CNTNAP2, that are associated with circulating lipid levels through interaction with physical activity; higher levels of physical activity enhance the HDL cholesterol-increasing effects of the CLASP1, LHX1, and SNTA1 loci and attenuate the LDL cholesterol-increasing effect of the CNTNAP2 locus. The CLASP1, LHX1, and SNTA1 regions harbor genes linked to muscle function and lipid metabolism. Our results elucidate the role of physical activity interactions in the genetic contribution to blood lipid levels.

Hidalgo BA, Sofer T, Qi Q, Schneiderman N, Chen YDI, Kaplan RC, et al. Associations between SLC16A11 variants and diabetes in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL).. Scientific reports. 2019;9(1):843.

Five sequence variants in SLC16A11 (rs117767867, rs13342692, rs13342232, rs75418188, and rs75493593), which occur in two non-reference haplotypes, were recently shown to be associated with diabetes in Mexicans from the SIGMA consortium. We aimed to determine whether these previous findings would replicate in the HCHS/SOL Mexican origin group and whether genotypic effects were similar in other HCHS/SOL groups. We analyzed these five variants in 2492 diabetes cases and 5236 controls from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL), which includes U.S. participants from six diverse background groups (Mainland groups: Mexican, Central American, and South American; and Caribbean groups: Puerto Rican, Cuban, and Dominican). We estimated the SNP-diabetes association in the six groups and in the combined sample. We found that the risk alleles occur in two non-reference haplotypes in HCHS/SOL, as in the SIGMA Mexicans. The haplotype frequencies were very similar between SIGMA Mexicans and the HCHS/SOL Mainland groups, but different in the Caribbean groups. The SLC16A11 sequence variants were significantly associated with risk for diabetes in the Mexican origin group (P = 0.025), replicating the SIGMA findings. However, these variants were not significantly associated with diabetes in a combined analysis of all groups, although the power to detect such effects was 85% (assuming homogeneity of effects among the groups). Additional analyses performed separately in each of the five non-Mexican origin groups were not significant. We also analyzed (1) exclusion of young controls and, (2) SNP by BMI interactions, but neither was significant in the HCHS/SOL data. The previously reported effects of SLC16A11 variants on diabetes in Mexican samples was replicated in a large Mexican-American sample, but these effects were not significant in five non-Mexican Hispanic/Latino groups sampled from U.S. populations. Lack of replication in the HCHS/SOL non-Mexicans, and in the entire HCHS/SOL sample combined may represent underlying genetic heterogeneity. These results indicate a need for future genetic research to consider heterogeneity of the Hispanic/Latino population in the assessment of disease risk, but add to the evidence suggesting SLC16A11 as a potential therapeutic target for type 2 diabetes.