Air pollution is an urgent concern linked to numerous health problems in low- and middle-income countries, where 92% of air pollution-related deaths occur. Particulate matter 2.5 (PM2.5) is the most harmful component of air pollutants, increasing inflammation and changing gut microbiota, favoring obesity, type 2 diabetes, and Alzheimer's Disease (AD). PM2.5 contains lipopolysaccharides (LPS), which can activate the Toll-like receptor 4 (TLR4) signaling pathway. This pathway can lead to the release of pro-inflammatory markers, including interleukins, and suppressor of cytokine signaling-3 (SOCS3), which inhibits leptin action, a hormone that keeps the energy homeostasis. Leptin plays a role in preventing amyloid plaque deposition and hyperphosphorylation of tau-protein (p-tau), mechanisms involved in the neurodegeneration in AD. Approximately 50 million people worldwide are affected by dementia, with a significant proportion living in low-and middle-income countries. This number is expected to triple by 2050. This mini-review focuses on the potential impact of PM2.5 exposure on the TLR4 signaling pathway, its contribution to leptin resistance, and dysbiosis that exacerbates the link between obesity and AD.
Publications
2024
Altered hepatic glucose fluxes are critical during the pathogenesis of type 2 diabetes. G protein-coupled receptors represent important regulators of hepatic glucose production. Recent studies have shown that hepatocytes express GPCRs that can couple to G12/13, a subfamily of heterotrimeric G proteins that has attracted relatively little attention in the past. Here we show, by analyzing several mutant mouse strains, that selective activation of hepatocyte G12/13 signaling leads to pronounced hyperglycemia and that this effect involves the stimulation of the ROCK1-JNK signaling cascade. Using both mouse and human hepatocytes, we also show that activation of endogenous sphingosine-1-phosphate type 1 receptors strongly promotes glucose release in a G12/13-dependent fashion. Studies with human liver samples indicate that hepatic GNA12 (encoding Gα12) expression levels positively correlate with indices of insulin resistance and impaired glucose homeostasis, consistent with a potential pathophysiological role of enhanced hepatic G12/13 signaling.
Background: Aging is a natural biological process influenced by multiple factors and is a significant contributor to various chronic diseases. Slowing down the aging process and extending health span have been pursuits of the scientific field. Methods: Examination of the effects of dietary polyphenols on hallmarks of aging such as genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, disabled macroautophagy, deregulated nutrient-sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, chronic inflammation, and dysbiosis. Results: Polyphenols, abundant in nature, exhibit numerous biological activities, including antioxidant effects, free radical scavenging, neuroprotection, and anti-aging properties. These compounds are generally safe and effective in potentially slowing aging and preventing age-related disorders. Conclusions: The review encourages the development of novel therapeutic strategies using dietary polyphenols to create holistic anti-aging therapies and nutritional supplements.
BACKGROUND: The Rho kinases 1 and 2 (ROCK1/2) are serine-threonine specific protein kinases that control actin cytoskeleton dynamics. They are expressed in all cells throughout the body, including cardiomyocytes, smooth muscle cells and endothelial cells, and intimately involved in cardiovascular health and disease. Pharmacological ROCK inhibition is beneficial in mouse models of hypertension, atherosclerosis, and neointimal thickening that display overactivated ROCK. However, the consequences of endothelial ROCK signaling deficiency in vivo remain unknown. To address this issue, we analyzed endothelial cell (EC) specific ROCK1 and 2 deletions.
METHODS: We generated Cdh5-CreERT2 driven, tamoxifen inducible loss of function alleles of ROCK1 and ROCK2 and analyzed mouse survival and vascular defects through cellular, biochemical, and molecular biology approaches.
RESULTS: We observed that postnatal or adult loss of endothelial ROCK1 and 2 was lethal within a week. Mice succumbed to multi-organ hemorrhage that occurred because of loss of vascular integrity. ECs displayed deficient cytoskeletal actin polymerization that prevented focal adhesion formation and disrupted junctional integrity. Retinal sprouting angiogenesis was also perturbed, as sprouting vessels exhibited lack of polymerized actin and defective lumen formation. In a three-dimensional endothelial sprouting assay, combined knockdown of ROCK1/2 or knockdown or ROCK2 but not ROCK1 led to reduced sprouting, lumenization and cell polarization defects caused by defective actin and altered VE-cadherin dynamics. The isoform specific role of endothelial ROCK2 correlated with ROCK2 substrate specificity for FAK and LIMK. By analyzing single and three allele mutants we show that one intact allele of ROCK2 is sufficient to maintain vascular integrity in vivo.
CONCLUSION: Endothelial ROCK1 and 2 maintain junctional integrity and ensure proper angiogenesis and lumen formation. The presence of one allele of ROCK2 is sufficient to maintain vascular growth and integrity. These data indicate the need of careful consideration for the use of ROCK inhibitors in disease settings.
2023
INTRODUCTION: The timing of maternal exposure to air pollution is crucial to define metabolic changes in the offspring. Here we aimed to determine the most critical period of maternal exposure to particulate matter (PM2.5) that impairs offspring's energy metabolism and gut microbiota composition.
METHODS: Unexposed female and male C57BL/6J mice were mated. PM2.5 or filtered air (FA) exposure occurred only in gestation (PM2.5/FA) or lactation (FA/PM2.5). We studied the offspring of both genders.
RESULTS: PM2.5 exposure during gestation increased body weight (BW) at birth and from weaning to young in male adulthood. Leptin levels, food intake, Agrp, and Npy levels in the hypothalamus were also increased in young male offspring. Ikbke, Tnf increased in male PM2.5/FA. Males from FA/PM2.5 group were protected from these phenotypes showing higher O2 consumption and Ucp1 in the brown adipose tissue. In female offspring, we did not see changes in BW at weaning. However, adult females from PM2.5/FA displayed higher BW and leptin levels, despite increased energy expenditure and thermogenesis. This group showed a slight increase in food intake. In female offspring from FA/PM2.5, BW, and leptin levels were elevated. This group displayed higher energy expenditure and a mild increase in food intake. To determine if maternal exposure to PM2.5 could affect the offspring's gut microbiota, we analyzed alpha diversity by Shannon and Simpson indexes and beta diversity by the Linear Discriminant Analysis (LDA) in offspring at 30 weeks. Unlike males, exposure during gestation led to higher adiposity and leptin maintenance in female offspring at this age. Gestation exposure was associated with decreased alpha diversity in the gut microbiota in both genders.
DISCUSSION: Our data support that exposure to air pollution during gestation is more harmful to metabolism than exposure during lactation. Male offspring had an unfavorable metabolic phenotype at a young age. However, at an older age, only females kept more adiposity. Ultimately, our data highlight the importance of controlling air pollution, especially during gestation.
BACKGROUND: NASH is the progressive form of NAFLD characterized by lipotoxicity, hepatocyte injury, tissue inflammation, and fibrosis. Previously, Rho-associated protein kinase (ROCK) 1 has been implicated in lipotoxic signaling in hepatocytes in vitro and high-fat diet-induced lipogenesis in vivo. However, whether ROCK1 plays a role in liver inflammation and fibrosis during NASH is unclear. Here, we hypothesized that pathogenic activation of ROCK1 promotes murine NASH pathogenesis.
METHODS AND RESULTS: Patients with NASH had increased hepatic ROCK1 expression compared with patients with fatty liver. Similarly, hepatic ROCK1 levels and activity were increased in mice with NASH induced by a western-like diet that is high in fat, fructose, and cholesterol (FFC). Hepatocyte-specific ROCK1 knockout mice on the FFC diet displayed a decrease in liver steatosis, hepatic cell death, liver inflammation, and fibrosis compared with littermate FFC-fed controls. Mechanistically, these effects were associated with a significant attenuation of myeloid cell recruitment. Interestingly, myeloid cell-specific ROCK1 deletion did not affect NASH development in FFC-fed mice. To explore the therapeutic opportunities, mice with established NASH received ROCKi, a novel small molecule kinase inhibitor of ROCK1/2, which preferentially accumulates in liver tissue. ROCK inhibitor treatment ameliorated insulin resistance and decreased liver injury, inflammation, and fibrosis.
CONCLUSIONS: Genetic or pharmacologic inhibition of ROCK1 activity attenuates murine NASH, suggesting that ROCK1 may be a therapeutic target for treating human NASH.
This study aimed to examine the comprehensive impact of five aspects of the nursing work environment as well as supervisory support, nurse characteristics, and burnout on intent to stay (ITS) among Korean hospital nurses. A cross-sectional questionnaire was distributed in seven general hospitals from May to July of 2019. Data were collected from a sample of 631 Korean nurses. The hypothesized model was evaluated using the STATA program for path models. Findings demonstrated that burnout played a mediating role on the relationships between the nursing work environment, supervisory support, nurse characteristics, and ITS. Burnout was the most influential predictor of ITS (β = -0.36, p < 0.001). Nurse participation in hospital affairs (β = 0.10, p = 0.044) and collegial nurse-physician relationships (β = 0.08, p = 0.038) had a direct effect on ITS. Supervisory support had a significant direct effect on ITS (β = 0.19, p < 0.001). Therefore, to increase nurses' ITS, it is necessary to improve their participation in hospital affairs and collegial relationships, as well as strengthen support from supervisors and reduce burnout.
Air pollution affects energy homeostasis detrimentally. Yet, knowledge of how each isolated pollutant can impact energy metabolism remains incomplete. The present study was designed to investigate the distinct effects of 1,2-naphthoquinone (1,2-NQ) on energy metabolism since this pollutant increases at the same rate as diesel combustion. In particular, we aimed to determine in vivo effects of subchronic exposure to 1,2-NQ on metabolic and inflammatory parameters of wild-type mice (WT) and to explore the involvement of tumor necrosis factor receptor 1 (TNFR1) and toll-like receptor 4 (TLR4) in this process. Males WT, TNFR1KO, and TLR4KO mice at eight weeks of age received 1,2-NQ or vehicle via nebulization five days a week for 17 weeks. In WT mice, 1,2-NQ slightly decreased the body mass compared to vehicle-WT. This effect was likely due to a mild food intake reduction and increased energy expenditure (EE) observed after six weeks of exposure. After nine weeks of exposure, we observed higher fasting blood glucose and impaired glucose tolerance, whereas insulin sensitivity was slightly improved compared to vehicle-WT. After 17 weeks of 1,2-NQ exposure, WT mice displayed an increased percentage of M1 and a decreased (p = 0.057) percentage of M2 macrophages in adipose tissue. The deletion of TNFR1 and TLR4 abolished most of the metabolic impacts caused by 1,2-NQ exposure, except for the EE and insulin sensitivity, which remained high in these mice under 1,2-NQ exposure. Our study demonstrates for the first time that subchronic exposure to 1,2-NQ affects energy metabolism in vivo. Although 1,2-NQ increased EE and slightly reduced feeding and body mass, the WT mice displayed higher inflammation in adipose tissue and impaired fasting blood glucose and glucose tolerance. Thus, in vivo subchronic exposure to 1,2-NQ is harmful, and TNFR1 and TLR4 are partially involved in these outcomes.
Adipocyte-derived leptin enters the brain to exert its anorexigenic action, yet its transport mechanism is poorly understood. Here we report that LRP1 (low-density lipoprotein receptor-related protein-1) mediates the transport of leptin across the blood-CSF barrier in Foxj1 expressing cells highly enriched at the choroid plexus (ChP), coupled with the short-form leptin receptor, and LRP1 deletion from ependymocytes and ChP cells leads to leptin resistance and hyperphagia, causing obesity. Thus, LRP1 in epithelial cells is a principal regulator of leptin transport in the brain.
BACKGROUND: Lymphatic vessels are responsible for tissue drainage, and their malfunction is associated with chronic diseases. Lymph uptake occurs via specialized open cell-cell junctions between capillary lymphatic endothelial cells (LECs), whereas closed junctions in collecting LECs prevent lymph leakage. LEC junctions are known to dynamically remodel in development and disease, but how lymphatic permeability is regulated remains poorly understood.
METHODS: We used various genetically engineered mouse models in combination with cellular, biochemical, and molecular biology approaches to elucidate the signaling pathways regulating junction morphology and function in lymphatic capillaries.
RESULTS: By studying the permeability of intestinal lacteal capillaries to lipoprotein particles known as chylomicrons, we show that ROCK (Rho-associated kinase)-dependent cytoskeletal contractility is a fundamental mechanism of LEC permeability regulation. We show that chylomicron-derived lipids trigger neonatal lacteal junction opening via ROCK-dependent contraction of junction-anchored stress fibers. LEC-specific ROCK deletion abolished junction opening and plasma lipid uptake. Chylomicrons additionally inhibited VEGF (vascular endothelial growth factor)-A signaling. We show that VEGF-A antagonizes LEC junction opening via VEGFR (VEGF receptor) 2 and VEGFR3-dependent PI3K (phosphatidylinositol 3-kinase)/AKT (protein kinase B) activation of the small GTPase RAC1 (Rac family small GTPase 1), thereby restricting RhoA (Ras homolog family member A)/ROCK-mediated cytoskeleton contraction.
CONCLUSIONS: Our results reveal that antagonistic inputs into ROCK-dependent cytoskeleton contractions regulate the interconversion of lymphatic junctions in the intestine and in other tissues, providing a tunable mechanism to control the lymphatic barrier.