Publications

2010

Kundu, Samrat T, and Frank J Slack. (2010) 2010. “Robust and Specific Inhibition of MicroRNAs in Caenorhabditis Elegans”. Journal of Biology 9 (3): 20. https://doi.org/10.1186/jbiol230.

MicroRNAs (miRNAs) are small non-coding RNAs that regulate the expression of numerous target genes. Yet, while hundreds of miRNAs have been identified, little is known about their functions. In a recent report published in Silence, Zheng and colleagues demonstrate a technique for robust and specific knockdown of miRNA expression in Caenorhabditis elegans using modified antisense oligonucleotides, which could be utilized as a powerful tool for the study of regulation and function of miRNAs in vivo.

Godshalk, Sirie E, Katya Melnik-Martinez V, Amy E Pasquinelli, and Frank J Slack. (2010) 2010. “MicroRNAs and Cancer: A Meeting Summary of the Eponymous Keystone Conference”. Epigenetics 5 (2): 164-8.

This report summarizes the information presented at the 2009 Keystone Conference on MicroRNAs and Cancer, held in Keystone, Colorado, USA, June 10th to 15th 2009. Soon after microRNAs (miRNAs) emerged as an abundant new class of non-coding RNAs (ncRNAs), evidence started to mount supporting important roles for these regulatory RNAs in human health and disease. Mis-regulation of specific miRNA pathways has been linked to diverse cancers. The recent Keystone meeting highlighted progress in understanding the role of miRNAs in normal development and oncogenesis. Recurring themes included the complexities associated with miRNA biogenesis, target recognition, elucidation of genetic networks where miRNAs play pivotal roles often within feedback loops, and the promise of small RNAs as diagnostics and therapeutics in combating cancer.

Ratner, Elena, Lingeng Lu, Marta Boeke, Rachel Barnett, Sunitha Nallur, Lena J Chin, Cory Pelletier, et al. (2010) 2010. “A KRAS-Variant in Ovarian Cancer Acts As a Genetic Marker of Cancer Risk”. Cancer Research 70 (16): 6509-15. https://doi.org/10.1158/0008-5472.CAN-10-0689.

Ovarian cancer (OC) is the single most deadly form of women's cancer, typically presenting as an advanced disease at diagnosis in part due to a lack of known risk factors or genetic markers of risk. The KRAS oncogene and altered levels of the microRNA (miRNA) let-7 are associated with an increased risk of developing solid tumors. In this study, we investigated a hypothesized association between an increased risk of OC and a variant allele of KRAS at rs61764370, referred to as the KRAS-variant, which disrupts a let-7 miRNA binding site in this oncogene. Specimens obtained were tested for the presence of the KRAS-variant from nonselected OC patients in three independent cohorts, two independent ovarian case-control studies, and OC patients with hereditary breast and ovarian cancer syndrome (HBOC) as well as their family members. Our results indicate that the KRAS-variant is associated with more than 25% of nonselected OC cases. Further, we found that it is a marker for a significant increased risk of developing OC, as confirmed by two independent case-control analyses. Lastly, we determined that the KRAS-variant was present in 61% of HBOC patients without BRCA1 or BRCA2 mutations, previously considered uninformative, as well as in their family members with cancer. Our findings strongly support the hypothesis that the KRAS-variant is a genetic marker for increased risk of developing OC, and they suggest that the KRAS-variant may be a new genetic marker of cancer risk for HBOC families without other known genetic abnormalities.

Olsson-Carter, Katherine, and Frank J Slack. (2010) 2010. “A Developmental Timing Switch Promotes Axon Outgrowth Independent of Known Guidance Receptors”. PLoS Genetics 6 (8). https://doi.org/10.1371/journal.pgen.1001054.

To form functional neuronal connections, axon outgrowth and guidance must be tightly regulated across space as well as time. While a number of genes and pathways have been shown to control spatial features of axon development, very little is known about the in vivo mechanisms that direct the timing of axon initiation and elongation. The Caenorhabditis elegans hermaphrodite specific motor neurons (HSNs) extend a single axon ventrally and then anteriorly during the L4 larval stage. Here we show the lin-4 microRNA promotes HSN axon initiation after cell cycle withdrawal. Axons fail to form in lin-4 mutants, while they grow prematurely in lin-4-overexpressing animals. lin-4 is required to down-regulate two inhibitors of HSN differentiation–the transcriptional regulator LIN-14 and the "stemness" factor LIN-28–and it likely does so through a cell-autonomous mechanism. This developmental switch depends neither on the UNC-40/DCC and SAX-3/Robo receptors nor on the direction of axon growth, demonstrating that it acts independently of ventral guidance signals to control the timing of HSN axon elongation.

Medina, Pedro P, Mona Nolde, and Frank J Slack. (2010) 2010. “OncomiR Addiction in an in Vivo Model of MicroRNA-21-Induced Pre-B-Cell Lymphoma”. Nature 467 (7311): 86-90. https://doi.org/10.1038/nature09284.

MicroRNAs (miRNAs) belong to a recently discovered class of small RNA molecules that regulate gene expression at the post-transcriptional level. miRNAs have crucial functions in the development and establishment of cell identity, and aberrant metabolism or expression of miRNAs has been linked to human diseases, including cancer. Components of the miRNA machinery and miRNAs themselves are involved in many cellular processes that are altered in cancer, such as differentiation, proliferation and apoptosis. Some miRNAs, referred to as oncomiRs, show differential expression levels in cancer and are able to affect cellular transformation, carcinogenesis and metastasis, acting either as oncogenes or tumour suppressors. The phenomenon of 'oncogene addiction' reveals that despite the multistep nature of tumorigenesis, targeting of certain single oncogenes can have therapeutic value, and the possibility of oncomiR addiction has been proposed but never demonstrated. MicroRNA-21 (miR-21) is a unique miRNA in that it is overexpressed in most tumour types analysed so far. Despite great interest in miR-21, most of the data implicating it in cancer have been obtained through miRNA profiling and limited in vitro functional assays. To explore the role of miR-21 in cancer in vivo, we used Cre and Tet-off technologies to generate mice conditionally expressing miR-21. Here we show that overexpression of miR-21 leads to a pre-B malignant lymphoid-like phenotype, demonstrating that mir-21 is a genuine oncogene. When miR-21 was inactivated, the tumours regressed completely in a few days, partly as a result of apoptosis. These results demonstrate that tumours can become addicted to oncomiRs and support efforts to treat human cancers through pharmacological inactivation of miRNAs such as miR-21.

Hada, Kazumasa, Masako Asahina, Hiroshi Hasegawa, Yasunori Kanaho, Frank J Slack, and Ryusuke Niwa. (2010) 2010. “The Nuclear Receptor Gene Nhr-25 Plays Multiple Roles in the Caenorhabditis Elegans Heterochronic Gene Network to Control the Larva-to-Adult Transition”. Developmental Biology 344 (2): 1100-9. https://doi.org/10.1016/j.ydbio.2010.05.508.

Developmental timing in the nematode Caenorhabditis elegans is controlled by heterochronic genes, mutations in which cause changes in the relative timing of developmental events. One of the heterochronic genes, let-7, encodes a microRNA that is highly evolutionarily conserved, suggesting that similar genetic pathways control developmental timing across phyla. Here we report that the nuclear receptor nhr-25, which belongs to the evolutionarily conserved fushi tarazu-factor 1/nuclear receptor NR5A subfamily, interacts with heterochronic genes that regulate the larva-to-adult transition in C. elegans. We identified nhr-25 as a regulator of apl-1, a homolog of the Alzheimer's amyloid precursor protein-like gene that is downstream of let-7 family microRNAs. NHR-25 controls not only apl-1 expression but also regulates developmental progression in the larva-to-adult transition. NHR-25 negatively regulates the expression of the adult-specific collagen gene col-19 in lateral epidermal seam cells. In contrast, NHR-25 positively regulates the larva-to-adult transition for other timed events in seam cells, such as cell fusion, cell division and alae formation. The genetic relationships between nhr-25 and other heterochronic genes are strikingly varied among several adult developmental events. We propose that nhr-25 has multiple roles in both promoting and inhibiting the C. elegans heterochronic gene pathway controlling adult differentiation programs.

de Lencastre, Alexandre, Zachary Pincus, Katherine Zhou, Masaomi Kato, Siu Sylvia Lee, and Frank J Slack. (2010) 2010. “MicroRNAs Both Promote and Antagonize Longevity in C. Elegans”. Current Biology : CB 20 (24): 2159-68. https://doi.org/10.1016/j.cub.2010.11.015.

BACKGROUND: aging is under genetic control in C. elegans, but the mechanisms of life-span regulation are not completely known. MicroRNAs (miRNAs) regulate various aspects of development and metabolism, and one miRNA has been previously implicated in life span.

RESULTS: here we show that multiple miRNAs change expression in C. elegans aging, including novel miRNAs, and that mutations in several of the most upregulated miRNAs lead to life-span defects. Some act to promote normal life span and stress resistance, whereas others inhibit these phenomena. We find that these miRNAs genetically interact with genes in the DNA damage checkpoint response pathway and in the insulin signaling pathway.

CONCLUSIONS: our findings reveal that miRNAs both positively and negatively influence life span. Because several miRNAs upregulated during aging regulate genes in conserved pathways of aging and thereby influence life span in C. elegans, we propose that miRNAs may play important roles in stress response and aging of more complex organisms.

Banerjee, Diya, Xin Chen, Shin Yi Lin, and Frank J Slack. (2010) 2010. “Kin-19/Casein Kinase Iα Has Dual Functions in Regulating Asymmetric Division and Terminal Differentiation in C. Elegans Epidermal Stem Cells”. Cell Cycle (Georgetown, Tex.) 9 (23): 4748-65.

Casein Kinase I (CKI) is a conserved component of the Wnt signaling pathway, which regulates cell fate determination in metazoans. We show that post-embryonic asymmetric division and fate specification of C. elegans epidermal stem cells are controlled by a non-canonical Wnt/β-catenin signaling pathway, involving the β-catenins WRM-1 and SYS-1, and that C. elegans kin-19/CKIα functions in this pathway. Furthermore, we find that kin-19 is the only member of the Wnt asymmetry pathway that functions with, or in parallel to, the heterochronic temporal patterning pathway to control withdrawal from self-renewal and subsequent terminal differentiation of epidermal stem cells. We show that, except in the case of kin-19, the Wnt asymmetry pathway and the heterochronic pathway function separately and in parallel to control different aspects of epidermal stem cell fate specification. However, given the function of kin-19/CKIα in both pathways, and that CKI, Wnt signaling pathway and heterochronic pathway genes are widely conserved in animals, our findings suggest that CKIα may function as a regulatory hub through which asymmetric division and terminal differentiation are coordinated in adult stem cells of vertebrates.

Gerstein, Mark B, Zhi John Lu, Eric L Van Nostrand, Chao Cheng, Bradley I Arshinoff, Tao Liu, Kevin Y Yip, et al. (2010) 2010. “Integrative Analysis of the Caenorhabditis Elegans Genome by the ModENCODE Project”. Science (New York, N.Y.) 330 (6012): 1775-87. https://doi.org/10.1126/science.1196914.

We systematically generated large-scale data sets to improve genome annotation for the nematode Caenorhabditis elegans, a key model organism. These data sets include transcriptome profiling across a developmental time course, genome-wide identification of transcription factor-binding sites, and maps of chromatin organization. From this, we created more complete and accurate gene models, including alternative splice forms and candidate noncoding RNAs. We constructed hierarchical networks of transcription factor-binding and microRNA interactions and discovered chromosomal locations bound by an unusually large number of transcription factors. Different patterns of chromatin composition and histone modification were revealed between chromosome arms and centers, with similarly prominent differences between autosomes and the X chromosome. Integrating data types, we built statistical models relating chromatin, transcription factor binding, and gene expression. Overall, our analyses ascribed putative functions to most of the conserved genome.

2009

Nimmo, Rachael A, and Frank J Slack. (2009) 2009. “An Elegant MiRror: MicroRNAs in Stem Cells, Developmental Timing and Cancer”. Chromosoma 118 (4): 405-18. https://doi.org/10.1007/s00412-009-0210-z.

MicroRNAs (miRNAs) were first discovered in genetic screens for regulators of developmental timing in the stem-cell-like seam cell lineage in Caenorhabditis elegans. As members of the heterochronic pathway, the lin-4 and let-7 miRNAs are required in the seam cells for the correct progression of stage-specific events and to ensure that cell cycle exit and terminal differentiation occur at the correct time. Other heterochronic genes such as lin-28 and lin-41 are direct targets of the lin-4 and let-7 miRNAs. Recent findings on the functions of the let-7 and lin-4/mir-125 miRNA families and lin-28 and lin-41 orthologs from a variety of organisms suggest that core elements of the heterochronic pathway are retained in mammalian stem cells and development. In particular, these genes appear to form bistable switches via double-negative feedback loops in both nematode and mammalian stem cell development, the functional relevance of which is finally becoming clear. let-7 inhibits stem cell self-renewal in both normal and cancer stem cells of the breast and acts as a tumor suppressor in lung and breast cancer. let-7 also promotes terminal differentiation at the larval to adult transition in both nematode stem cells and fly wing imaginal discs and inhibits proliferation of human lung and liver cancer cells. Conversely, LIN-28 is a highly specific embryonic stem cell marker and is one of four "stemness" factors used to reprogram adult fibroblasts into induced pluripotent stem cells; furthermore, lin-28 is oncogenic in hepatocellular carcinomas. Therefore, a core module of heterochronic genes–lin-28, lin-41, let-7, and lin-4/mir-125-acts as an ancient regulatory switch for differentiation in stem cells (and in some cancers), illustrating that nematode seam cells mirror miRNA regulatory networks in mammalian stem cells during both normal development and cancer.