Publications

2011

Chan, Elcie, Rajeshvari Patel, Sunitha Nallur, Elena Ratner, Antonella Bacchiocchi, Kathleen Hoyt, Sebastian Szpakowski, et al. (2011) 2011. “MicroRNA Signatures Differentiate Melanoma Subtypes.”. Cell Cycle (Georgetown, Tex.) 10 (11): 1845-52.

Melanoma is an aggressive cancer that is highly resistance to therapies once metastasized. We studied microRNA (miRNA) expression in clinical melanoma subtypes and evaluated different miRNA signatures in the background of gain of function somatic and inherited mutations associated with melanoma. Total RNA from 42 patient derived primary melanoma cell lines and three independent normal primary melanocyte cell cultures was evaluated by miRNA array. MiRNA expression was then analyzed comparing subtypes and additional clinicopathologic criteria including somatic mutations. The prevalence and association of an inherited variant in a miRNA binding site in the 3'UTR of the KRAS oncogene, referred to as the KRAS-variant, was also evaluated. We show that seven miRNAs, miR-142-3p, miR-486, miR-214, miR-218, miR-362, miR-650 and miR-31, were significantly correlated with acral as compared to non-acral melanomas (p < 0.04). In addition, we discovered that the KRAS-variant was enriched in non-acral melanoma (25%), and that miR-137 under expression was significantly associated with melanomas with the KRAS-variant. Our findings indicate that miRNAs are differentially expressed in melanoma subtypes and that their misregulation can be impacted by inherited gene variants, supporting the hypothesis that miRNA misregulation reflects biological differences in melanoma.

Blum, Jeremy S, Caroline E Weller, Carmen J Booth, Imran A Babar, Xianping Liang, Frank J Slack, and Mark Saltzman. (2011) 2011. “Prevention of K-Ras- and Pten-Mediated Intravaginal Tumors by Treatment With Camptothecin-Loaded PLGA Nanoparticles.”. Drug Delivery and Translational Research 1 (5): 383-94.

Primary squamous cell carcinoma of the vagina is an uncommon disease that often exhibits few symptoms before reaching an advanced stage. Topical intravaginal therapies for resolving precancerous and cancerous vaginal lesions have the potential to be non-invasive and safer alternatives to existing treatment options. Two factors limit the testing of this approach: lack of a preclinical intravaginal tumor model and absence of safe and effective topical delivery systems. In this study, we present both an inducible genetic model of vaginal squamous cell carcinoma in mice and a novel topical delivery system. Tumors were generated via activation of oncogenic K-Ras and inactivation of tumor suppressor Pten in LSL-K-RasG12D/+PtenloxP/loxP mice. This was accomplished by exposing the vaginal epithelium to a recombinant adenoviral vector expressing Cre recombinase (AdCre). As early as 3 weeks after AdCre exposure exophytic masses protruding from the vagina were observed; these were confirmed to be squamous cell carcinoma by histology. We utilized this model to investigate an anticancer therapy based on poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with camptothecin (CPT); our earlier work has shown that PLGA nanoparticles can penetrate the vaginal epithelium and provide sustained CPT release. Particles were lavaged into the vaginal cavity of AdCre-infected mice. None of the mice receiving CPT nanoparticles developed tumors. These results demonstrate a novel topical strategy to resolve precancerous and cancerous lesions in the female reproductive tract.

Zhou, Katherine I, Zachary Pincus, and Frank J Slack. (2011) 2011. “Longevity and Stress in Caenorhabditis Elegans.”. Aging 3 (8): 733-53.

It has long been understood that many of the same manipulations that increase longevity in Caenorhabditis elegans also increase resistance to various acute stressors, and vice-versa; moreover these findings hold in more complex organisms as well. Nevertheless, the mechanistic relationship between these phenotypes remains unclear, and in many cases the overlap between stress resistance and longevity is inexact. Here we review the known connections between stress resistance and longevity, discuss instances in which these connections are absent, and summarize the theoretical explanations that have been posited for these phenomena.

Babar, Imran A, Jennifer Czochor, Allison Steinmetz, Joanne B Weidhaas, Peter M Glazer, and Frank J Slack. (2011) 2011. “Inhibition of Hypoxia-Induced MiR-155 Radiosensitizes Hypoxic Lung Cancer Cells.”. Cancer Biology & Therapy 12 (10): 908-14. https://doi.org/10.4161/cbt.12.10.17681.

miR-155 is a prominent microRNA (miRNA) that regulates genes involved in immunity and cancer-related pathways. miR-155 is overexpressed in lung cancer, which correlates with poor patient prognosis. It is unclear how miR-155 becomes increased in lung cancers and how this increase contributes to reduced patient survival. Here, we show that hypoxic conditions induce miR-155 expression in lung cancer cells and trigger a corresponding decrease in a validated target, FOXO3A. Furthermore, we find that increased levels of miR-155 radioprotects lung cancer cells, while inhibition of miR-155 radiosensitizes these cells. Moreover, we reveal a therapeutically important link between miR-155 expression, hypoxia, and irradiation by demonstrating that anti-miR-155 molecules also sensitize hypoxic lung cancer cells to irradiation. Our study helps explain how miR-155 becomes elevated in lung cancers, which contain extensive hypoxic microenvironments, and demonstrates that inhibition of miR-155 may have important therapeutic potential as a means to radiosensitize hypoxic lung cancer cells.

Pincus, Zachary, Thalyana Smith-Vikos, and Frank J Slack. (2011) 2011. “MicroRNA Predictors of Longevity in Caenorhabditis Elegans.”. PLoS Genetics 7 (9): e1002306. https://doi.org/10.1371/journal.pgen.1002306.

Neither genetic nor environmental factors fully account for variability in individual longevity: genetically identical invertebrates in homogenous environments often experience no less variability in lifespan than outbred human populations. Such variability is often assumed to result from stochasticity in damage accumulation over time; however, the identification of early-life gene expression states that predict future longevity would suggest that lifespan is least in part epigenetically determined. Such "biomarkers of aging," genetic or otherwise, nevertheless remain rare. In this work, we sought early-life differences in organismal robustness in unperturbed individuals and examined the utility of microRNAs, known regulators of lifespan, development, and robustness, as aging biomarkers. We quantitatively examined Caenorhabditis elegans reared individually in a novel apparatus and observed throughout their lives. Early-to-mid-adulthood measures of homeostatic ability jointly predict 62% of longevity variability. Though correlated, markers of growth/muscle maintenance and of metabolic by-products ("age pigments") report independently on lifespan, suggesting that graceful aging is not a single process. We further identified three microRNAs in which early-adulthood expression patterns individually predict up to 47% of lifespan differences. Though expression of each increases throughout this time, mir-71 and mir-246 correlate with lifespan, while mir-239 anti-correlates. Two of these three microRNA "biomarkers of aging" act upstream in insulin/IGF-1-like signaling (IIS) and other known longevity pathways, thus we infer that these microRNAs not only report on but also likely determine longevity. Thus, fluctuations in early-life IIS, due to variation in these microRNAs and from other causes, may determine individual lifespan.

Van Wynsberghe, Priscilla M, Shih-Peng Chan, Frank J Slack, and Amy E Pasquinelli. (2011) 2011. “Analysis of MicroRNA Expression and Function.”. Methods in Cell Biology 106: 219-52. https://doi.org/10.1016/B978-0-12-544172-8.00008-6.

Originally discovered in C. elegans, microRNAs (miRNAs) are small RNAs that regulate fundamental cellular processes in diverse organisms. MiRNAs are encoded within the genome and are initially transcribed as primary transcripts that can be several kilobases in length. Primary transcripts are successively cleaved by two RNase III enzymes, Drosha in the nucleus and Dicer in the cytoplasm, to produce ∼70 nucleotide (nt) long precursor miRNAs and 22 nt long mature miRNAs, respectively. Mature miRNAs regulate gene expression post-transcriptionally by imperfectly binding target mRNAs in association with the multiprotein RNA induced silencing complex (RISC). The conserved sequence, expression pattern, and function of some miRNAs across distinct species as well as the importance of specific miRNAs in many biological pathways have led to an explosion in the study of miRNA biogenesis, miRNA target identification, and miRNA target regulation. Many advances in our understanding of miRNA biology have come from studies in the powerful model organism C. elegans. This chapter reviews the current methods used in C. elegans to study miRNA biogenesis, small RNA populations, miRNA-protein complexes, and miRNA target regulation.

Kasinski, Andrea L, and Frank J Slack. (2011) 2011. “Epigenetics and Genetics. MicroRNAs en Route to the Clinic: Progress in Validating and Targeting MicroRNAs for Cancer Therapy.”. Nature Reviews. Cancer 11 (12): 849-64. https://doi.org/10.1038/nrc3166.

In normal cells multiple microRNAs (miRNAs) converge to maintain a proper balance of various processes, including proliferation, differentiation and cell death. miRNA dysregulation can have profound cellular consequences, especially because individual miRNAs can bind to and regulate multiple mRNAs. In cancer, the loss of tumour-suppressive miRNAs enhances the expression of target oncogenes, whereas increased expression of oncogenic miRNAs (known as oncomirs) can repress target tumour suppressor genes. This realization has resulted in a quest to understand the pathways that are regulated by these miRNAs using in vivo model systems, and to comprehend the feasibility of targeting oncogenic miRNAs and restoring tumour-suppressive miRNAs for cancer therapy. Here we discuss progress in using mouse models to understand the roles of miRNAs in cancer and the potential for manipulating miRNAs for cancer therapy as these molecules make their way towards clinical trials.

Landau, Dan-Avi, and Frank J Slack. (2011) 2011. “MicroRNAs in Mutagenesis, Genomic Instability, and DNA Repair.”. Seminars in Oncology 38 (6): 743-51. https://doi.org/10.1053/j.seminoncol.2011.08.003.

MicroRNAs (miRNAs) are aiding our understanding of cancer biology, and are now coming close to therapeutic use as well. Here, we focus specifically on the interaction between miRNAs and genomic instability. MiRNA regulation is essential to many cellular processes, and escape from this regulatory network seems to be a common characteristic of malignant transformation. Genomic instability may preferentially target miRNAs either because of selective pressure or because of inherent vulnerability related to their location near fragile sites. Furthermore, disruption of miRNA processing elements affords a more global release from miRNA regulation. Finally, we review how miRNAs function as both effectors and modulators of the DNA damage response, intricately weaved with traditional elements such as ATM, P53, and MMR. Thus, miRNAs are important substrates for genomic instability and play a crucial role in cellular DNA sensing and repair mechanisms.

2010

Pincus, Zachary, and Frank J Slack. (2010) 2010. “Developmental Biomarkers of Aging in Caenorhabditis Elegans.”. Developmental Dynamics : An Official Publication of the American Association of Anatomists 239 (5): 1306-14. https://doi.org/10.1002/dvdy.22224.

The developmental process of the nematode Caenorhabditis elegans is famously invariant; however, these animals have surprisingly variable lifespans, even in extremely homogenous environments. Inter-individual differences in muscle-function decline, accumulation of lipofuscin in the gut, internal growth of food bacteria, and ability to mobilize heat-shock responses all appear to be predictive of a nematode's remaining lifespan; whether these are causal, or mere correlates of individual decline and death, has yet to be determined. Moreover, few "upstream" causes of inter-individual variability have been identified. It may be the case that variability in lifespan is entirely due to stochastic damage accumulation; alternately, perhaps such variability has a developmental origin and/or genes involved in developmental canalization also act to buffer phenotypic heterogeneity later in life. We review these two hypotheses with an eye toward whether they can be experimentally differentiated.