Cardiac MR Characterization of Myocardial Tissue Injury in a Miniature Swine Model of Cancer Therapy-related Cardiovascular Toxicity.

Nakata, Kei, Selcuk Kucukseymen, Xiaoying Cai, Tuyen Yankama, Jennifer Rodriguez, Eiryu Sai, Patrick Pierce, et al. 2024. “Cardiac MR Characterization of Myocardial Tissue Injury in a Miniature Swine Model of Cancer Therapy-Related Cardiovascular Toxicity.”. Journal of Cardiovascular Magnetic Resonance : Official Journal of the Society for Cardiovascular Magnetic Resonance, 101033.

Abstract

BACKGROUND: Left ventricular ejection fraction (LVEF) is the most commonly clinically used imaging parameter for assessing cancer therapy-related cardiac dysfunction (CTRCD). However, LVEF declines may occur late, after substantial injury. This study sought to investigate cardiovascular magnetic resonance (CMR) imaging markers of subclinical cardiac injury in a miniature swine model.

METHODS: Female Yucatan miniature swine (n=14) received doxorubicin (2mg/kg) every 3 weeks for 4 cycles. CMR, including cine, tissue characterization via T1 and T2 mapping, and late gadolinium enhancement (LGE) was performed on the same day as doxorubicin administration and three weeks after the final chemotherapy cycle. In addition, MR spectroscopy (MRS) was performed during the 3 weeks after the final chemotherapy in 7 pigs. A single CMR and MRS exam was also performed in three Yucatan miniature swine that were age- and weight-matched to the final imaging exam of the doxorubicin-treated swine to serve as controls. CTRCD was defined as histological early morphologic changes, including cytoplasmic vacuolization and myofibrillar loss of myocytes, based on post-mortem analysis of humanely euthanized pigs after the final CMR exam.

RESULTS: Of 13 swine completing five serial CMR scans, 10 (77%) had histological evidence of CTRCD. Three animals had neither histological evidence nor changes in LVEF from baseline. No absolute LVEF <40% or LGE were observed. Native T1, extracellular volume (ECV), and T2 at 12 weeks were significantly higher in swine with CTRCD than those without CTRCD (1178 ms vs. 1134 ms, p=0.002, 27.4% vs. 24.5%, p=0.03, and 38.1 ms vs. 36.4 ms, p=0.02, respectively). There were no significant changes in strain parameters. The temporal trajectories in native T1, ECV, and T2 in swine with CTRCD showed similar and statistically significant increases. At the same time, there were no differences in their temporal changes between those with and without CTRCD. MRS myocardial triglyceride content substantially differed among controls, swine with and without CTRCD (0.89%, 0.30%, 0.54%, respectively, ANOVA, p=0.01), and associated with the severity of histological findings and incidence of vacuolated cardiomyocytes.

CONCLUSIONS: Serial CMR imaging alone has a limited ability to detect histologic CTRCD beyond LVEF. Integrating MRS myocardial triglyceride content may be useful for detection of early potential CTRCD.

Last updated on 03/18/2024
PubMed