Publications

2003

Bocci, Guido, Giulio Francia, Shan Man, Jack Lawler, and Robert S Kerbel. (2003) 2003. “Thrombospondin 1, a Mediator of the Antiangiogenic Effects of Low-Dose Metronomic Chemotherapy.”. Proceedings of the National Academy of Sciences of the United States of America 100 (22): 12917-22.

Chemotherapeutic drugs chronically administered to tumor-bearing mice, using a frequent schedule at doses substantially lower than the maximum tolerated dose (MTD) (i.e., metronomic dosing), can cause sustained and potent antiangiogenic effects by targeting the endothelial cells of newly growing tumor blood vessels. These effects appear to occur in the absence of an increase in the severity of side effects caused by destruction of other cell types normally sensitive to MTD chemotherapy, suggesting a marked and selective sensitivity of activated endothelial cells, the basis of which is unknown. Here we report that protracted exposure of endothelial cells in vitro to low concentrations of several different anticancer agents, including microtubule inhibitors and an alkylating agent, caused marked induction of gene and protein expression of TSP-1, a potent and endothelial-specific inhibitor of angiogenesis. Increases in circulating TSP-1 were also detected in the plasma of human tumor-bearing severe combined immunodeficient mice treated with metronomic low-dose cyclophosphamide. Most importantly, the antiangiogenic and antitumor effects of low-dose continuous cyclophosphamide were lost in TSP-1-null C57BL/6 mice, whereas, in contrast, these effects were retained by using a MTD schedule of the same drug. Taken together, the results implicate TSP-1 as a secondary mediator of the antiangiogenic effects of at least some low-dose metronomic chemotherapy regimens.

Kipnes, J, A L Carlberg, G A Loredo, J Lawler, R S Tuan, and D J Hall. (2003) 2003. “Effect of Cartilage Oligomeric Matrix Protein on Mesenchymal Chondrogenesis in Vitro.”. Osteoarthritis and Cartilage 11 (6): 442-54.

OBJECTIVE: Cartilage oligomeric matrix protein (COMP) mutations have been identified as responsible for two arthritic disorders, multiple epiphyseal dysplasia (MED) and pseudoachondroplasia (PSACH). However, the function of COMP in chondrogenic differentiation is largely unknown. Our investigation focuses on analyzing the function of normal COMP protein in cartilage biology.

METHODS AND RESULTS: To explore the function of COMP we make use of an in vitro model system for chondrogenesis, consisting of murine C3H10T1/2 mesenchymal cells maintained as a high-density micromass culture and stimulated with bone morphogenetic protein 2 (BMP-2). Under these culture conditions, C3H10T1/2 cells undergo active chondrogenesis in a manner analogous to that of embryonic limb mesenchymal cells, and have been shown to serve as a valid model system to investigate the mechanisms regulating mesenchymal chondrogenesis. Our results indicate that ectopic COMP expression enhances several early aspects of chondrogenesis induced by BMP-2 in this system, indicating that COMP functions in part to positively regulate chondrogenesis. Additionally, COMP has inhibitory effects on proliferation of cells in monolayer. However, at later times in micromass culture, ectopic COMP expression in the presence of BMP-2 causes an increase in apoptosis, with an accompanying reduction in cell numbers in the micromass culture. However, the remaining cells retain their chondrogenic phenotype.

CONCLUSIONS: These data suggest that COMP and BMP-2 signaling converge to regulate the fate of these cells in vitro by affecting both early and late stages of chondrogenesis.

Wang, Shoujian, Zhifeng Wu, Christine M Sorenson, Jack Lawler, and Nader Sheibani. (2003) 2003. “Thrombospondin-1-Deficient Mice Exhibit Increased Vascular Density During Retinal Vascular Development and Are Less Sensitive to Hyperoxia-Mediated Vessel Obliteration.”. Developmental Dynamics : An Official Publication of the American Association of Anatomists 228 (4): 630-42.

Thrombospondin-1 (TSP1) is a natural inhibitor of angiogenesis. Its expression is most prominent during the late stages of vascular development and in the adult vasculature. Our previous studies have shown that TSP1 expression promotes a quiescent, differentiated phenotype of vascular endothelial cells. However, the physiological role TSP1 plays during vascular development and neovascularization requires further delineation. Here, we investigated the role of TSP1 during development of retinal vasculature and retinal neovascularization during oxygen-induced ischemic retinopathy. The retinal vascular density was increased in TSP1-deficient (TSP1-/-) mice compared with wild-type mice. This finding was mainly attributed to increased number of retinal endothelial cells in TSP1-/- mice. During oxygen-induced ischemic retinopathy, the developing retinal vasculature of TSP1-/- mice was less sensitive to vessel obliteration induced by hyperoxia but exhibited a similar level of neovascularization induced by normoxia compared with wild-type mice. This finding is consistent with the similar pattern of VEGF expression detected in wild-type and TSP1-/- mice. Furthermore, the increased expression of TSP1 during development of retinal vasculature was not affected by oxygen-induced ischemic retinopathy. In addition, the regression of ocular embryonic (hyaloid) vessels, as well as the newly formed retinal vessels during oxygen-induced ischemic retinopathy, was delayed in TSP1-/- mice. Therefore, TSP1 is a modulator of vascular homeostasis and its expression is essential for appropriate remodeling and maturation of retinal vasculature.

2002

Agah, Azin, Themis R Kyriakides, Jack Lawler, and Paul Bornstein. (2002) 2002. “The Lack of Thrombospondin-1 (TSP1) Dictates the Course of Wound Healing in Double-TSP1/TSP2-Null Mice.”. The American Journal of Pathology 161 (3): 831-9.

Thrombospondin (TSP) 1 and 2, share the same overall structure and interact with a number of the same cell-surface receptors. In an attempt to elucidate their biological roles more clearly, we generated double-TSP1/TSP2-null animals and compared their phenotype to those of TSP1- and TSP2-null mice. Double-null mice exhibited an apparent phenotype that primarily represented the sum of the abnormalities observed in the single-null mice. However, surprisingly, the wound-healing response in double-null mice resembled that in TSP1-null animals and differed from that in TSP2-nulls. Thus, although the excisional wounds of TSP2-null mice are characterized by increased neovascularization and heal at an accelerated rate, TSP1-null and double-null animals demonstrated delayed healing, as indicated by the prolonged persistence of inflammation and delayed scab loss. Immunohistochemical analysis showed that, similar to TSP1-null mice, the granulation tissue of double-null mice was not excessively vascularized. Furthermore as in TSP1-nulls, decreases in macrophage recruitment and in the levels of monocyte chemoattractant protein-1 indicated that the inflammatory phase of the wound-healing response was impaired in double-null mice. Our data demonstrate that the consequences of a lack of TSP1 predominate in the response of double-null mice, and dictate the course of wound healing. These findings reflect distinct temporal and spatial expressions of TSP1 and TSP2 in the healing wound.

Lawler, Jack. (2002) 2002. “Thrombospondin-1 As an Endogenous Inhibitor of Angiogenesis and Tumor Growth.”. Journal of Cellular and Molecular Medicine 6 (1): 1-12.

Thrombospondin-1 (TSP-1) is a matricellular glycoprotein that influences cellular phenotype and the structure of the extracellular matrix. These effects are important components of the tissue remodeling that is associated with angiogenesis and neoplasia. The genetic mutations in oncogenes and tumor suppressor genes that occur within tumor cells are frequently associated with decreased expression of TSP-1. However, the TSP-1 that is produced by stromal fibroblasts, endothelial cells and immune cells suppresses tumor progression. TSP-1 inhibits angiogenesis through direct effects on endothelial cell migration and survival and through indirect effects on growth factor mobilization. TSP-1 that is present in the tumor microenvironment also acts to suppress tumor cell growth through activation of transforming growth factor beta in those tumor cells that are responsive to TGF beta. In this review, the molecular basis for the role of TSP-1 in the inhibition of tumor growth and angiogenesis is summarized.

Tan, Kemin, Mark Duquette, Jin-huan Liu, Yicheng Dong, Rongguang Zhang, Andrzej Joachimiak, Jack Lawler, and Jia-huai Wang. (2002) 2002. “Crystal Structure of the TSP-1 Type 1 Repeats: A Novel Layered Fold and Its Biological Implication.”. The Journal of Cell Biology 159 (2): 373-82.

Thrombospondin-1 (TSP-1) contains three type 1 repeats (TSRs), which mediate cell attachment, glycosaminoglycan binding, inhibition of angiogenesis, activation of TGFbeta, and inhibition of matrix metalloproteinases. The crystal structure of the TSRs reported in this article reveals a novel, antiparallel, three-stranded fold that consists of alternating stacked layers of tryptophan and arginine residues from respective strands, capped by disulfide bonds on each end. The front face of the TSR contains a right-handed spiral, positively charged groove that might be the "recognition" face, mediating interactions with various ligands. This is the first high-resolution crystal structure of a TSR domain that provides a prototypic architecture for structural and functional exploration of the diverse members of the TSR superfamily.

2001

Nesselroth, S M, A I Willis, S Fuse, E T Olson, J Lawler, B E Sumpio, and V Gahtan. (2001) 2001. “The C-Terminal Domain of Thrombospondin-1 Induces Vascular Smooth Muscle Cell Chemotaxis.”. Journal of Vascular Surgery 33 (3): 595-600.

OBJECTIVE: Thrombospondin-1 (TSP-1), an acute-phase reactant implicated in vascular disease, is a 420-kd multifunctional glycoprotein chemotactic for vascular smooth muscle cells (VSMCs). TSP-1 has six domains of repeating homologous amino acid sequences: N-terminal, procollagen homology, type 1 repeat, type 2 repeat, type 3 repeat/RGD (T3), and C-terminal (COOH). The purpose of this experiment was to determine which domains of TSP-1 induce VSMC chemotaxis.

METHODS: A modified Boyden Chamber chemotaxis assay was used to assess VSMC migration. Serum-free medium, TSP-1, or each of the fusion proteins (10 and 20 microg/mL) synthesized for the different domains were placed in the bottom wells. Quiescent bovine aortic VSMCs (50,000) were placed in the top wells. After 4 hours at 37 degrees C, migrated VSMCs were recorded as cells per five fields (400x) and analyzed with the paired t test. To verify the fusion protein data, we performed chemotaxis assays with antibodies to each of the domains (25 microg/mL) combined with TSP-1 (20 microg/mL) in the bottom wells and VSMCs in the top wells.

RESULTS: The COOH domain significantly stimulated VSMC chemotaxis (P = <.001). To a lesser extent, the N-terminal and T3 domains also induced chemotaxis (P <.05). However, only the anti-COOH antibody (C6.7) and the anti-integrin-associated protein portion of COOH antibody (D4.6) significantly inhibited TSP-1-induced VSMC chemotaxis (by 85% and 92%, respectively).

CONCLUSIONS: These results implicate the COOH domain as the portion of the TSP-1 molecule primarily responsible for VSMC chemotaxis. This experiment suggests that future strategies in the prevention of VSMC migration, an initial step in the development of vascular lesions, may involve selective inhibition of the COOH domain of TSP-1.

Riessen, R, M Fenchel, H Chen, D I Axel, K R Karsch, and J Lawler. (2001) 2001. “Cartilage Oligomeric Matrix Protein (thrombospondin-5) Is Expressed by Human Vascular Smooth Muscle Cells.”. Arteriosclerosis, Thrombosis, and Vascular Biology 21 (1): 47-54.

Cartilage oligomeric matrix protein (COMP/thrombospondin [TSP]-5) belongs to the thrombospondin gene family and is an extracellular glycoprotein found predominantly in cartilage and tendon. To date, there is limited evidence of COMP/TSP-5 expression outside of the skeletal system. The aim of the present study was to investigate the expression of COMP/TSP-5 in cultured human vascular smooth muscle cells and human arteries. COMP/TSP-5 mRNA and protein expression was detected in cultured human vascular smooth muscle cells with both Northern blotting and immunoprecipitation. Serum, as well as transforming growth factor (TGF)beta1 and TGF-beta3, stimulated COMP/TSP-5 mRNA expression. COMP/TSP-5 was detected in normal as well as atherosclerotic and restenotic human arteries with immunohistochemistry. The majority of COMP/TSP-5 was expressed in close proximity to vascular smooth muscle cells. In vitro attachment assays demonstrated strong adhesion of smooth muscle cells to COMP/TSP-5-coated surfaces, with the majority of cells spreading and forming stress fibers. In addition, COMP/TSP-5 supported the migration of smooth muscle cells in vitro. The present study shows that COMP/TSP-5 is present in human arteries and may play a role in the adhesion and migration of vascular smooth muscle cells during vasculogenesis and in vascular disease settings such as atherosclerosis.

Miao, W M, E Vasile, W S Lane, and J Lawler. (2001) 2001. “CD36 Associates With CD9 and Integrins on Human Blood Platelets.”. Blood 97 (6): 1689-96.

The membrane glycoprotein CD36 is involved in platelet aggregation, inhibition of angiogenesis, atherosclerosis, and sequestration of malaria-parasitized erythrocytes. In this study, immunoprecipitations with anti-CD36 antibodies were performed to identify proteins that associate with CD36 in the platelet membrane. Platelets were solubilized in 1% Triton X-100, 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), Brij 96, or Brij 99, and the proteins that coprecipitated with CD36 were identified by peptide mass spectrometry and Western blotting. The tetraspanin protein CD9 and the integrins alphaII(b)beta3 and alpha6beta1 specifically coprecipitated with CD36 from platelets that were solubilized in CHAPS and Brij 99 but not from platelets that were solubilized in Triton X-100. Only CD9 is coprecipitated with CD36 from platelets that were solubilized in Brij 96. Reciprocal immunoprecipitations with antibodies to CD9, alpha6, alphaIIb, or beta3 from Brij 99-solubilized platelets coprecipitated CD36. Coprecipitation of CD36, CD9, and alpha6beta1 was also observed on platelets from a patient with Glanzmann thrombasthenia, indicating that alphaII(b)beta3 is not required for the other proteins to associate. Colocalization of alpha6 and CD36, of CD9 and CD36, and of alpha6 and CD9 was observed on intact platelets prior to solubilization, using double immunofluorescence microscopy. These data indicate that CD36 associates with CD9 and integrins on human blood platelets. These associated proteins may mediate or participate in some of the diverse biological functions of CD36.

Hofsteenge, J, K G Huwiler, B Macek, D Hess, J Lawler, D F Mosher, and J Peter-Katalinic. (2001) 2001. “C-Mannosylation and O-Fucosylation of the Thrombospondin Type 1 Module.”. The Journal of Biological Chemistry 276 (9): 6485-98.

Thrombospondin-1 (TSP-1) is a multidomain protein that has been implicated in cell adhesion, motility, and growth. Some of these functions have been localized to the three thrombospondin type 1 repeats (TSRs), modules of approximately 60 amino acids in length with conserved Cys and Trp residues. The Trp residues occur in WXXW patterns, which are the recognition motifs for protein C-mannosylation. This modification involves the attachment of an alpha-mannosyl residue to the C-2 atom of the first tryptophan. Analysis of human platelet TSP-1 revealed that Trp-368, -420, -423, and -480 are C-mannosylated. Mannosylation also occurred in recombinant, baculovirally expressed TSR modules from Sf9 and "High Five" cells, contradictory to earlier reports that such cells do not carry out this reaction. In the course of these studies it was appreciated that the TSRs in TSP-1 undergo a second form of unusual glycosylation. By using a novel mass spectrometric approach, it was found that Ser-377, Thr-432, and Thr-489 in the motif CSX(S/T)CG carry the O-linked disaccharide Glc-Fuc-O-Ser/Thr. This is the first protein in which such a disaccharide has been identified, although protein O-fucosylation is well described in epidermal growth factor-like modules. Both C- and O-glycosylations take place on residues that have been implicated in the interaction of TSP-1 with glycosaminoglycans or other cellular receptors.