Publications
2024
BACKGROUND: Early menarche is an established risk factor for breast cancer but its molecular contribution to tumor biology and prognosis remains unclear.
METHODS: We profiled transcriptome-wide gene expression in breast tumors (N = 846) and tumor-adjacent normal tissues (N = 666) from women in the Nurses' Health Studies (NHS) to investigate whether early menarche (age < 12) is associated with tumor molecular and prognostic features in women with breast cancer. Multivariable linear regression and pathway analyses using competitive gene set enrichment analysis were conducted in both tumor and adjacent-normal tissue and externally validated in TCGA (N = 116). Subgroup analyses stratified on ER-status based on the tumor were also performed. PAM50 signatures were used for tumor molecular subtyping and to generate proliferation and risk of recurrence scores. We created a gene expression score using LASSO regression to capture early menarche based on 28 genes from FDR-significant pathways in breast tumor tissue in NHS and tested its association with 10-year disease-free survival in both NHS (N = 836) and METABRIC (N = 952).
RESULTS: Early menarche was significantly associated with 369 individual genes in adjacent-normal tissues implicated in extracellular matrix, cell adhesion, and invasion (FDR ≤ 0.1). Early menarche was associated with upregulation of cancer hallmark pathways (18 significant pathways in tumor, 23 in tumor-adjacent normal, FDR ≤ 0.1) related to proliferation (e.g. Myc, PI3K/AKT/mTOR, cell cycle), oxidative stress (e.g. oxidative phosphorylation, unfolded protein response), and inflammation (e.g. pro-inflammatory cytokines IFN α and IFN γ ). Replication in TCGA confirmed these trends. Early menarche was associated with significantly higher PAM50 proliferation scores (β = 0.082 [0.02-0.14]), odds of aggressive molecular tumor subtypes (basal-like, OR = 1.84 [1.18-2.85] and HER2-enriched, OR = 2.32 [1.46-3.69]), and PAM50 risk of recurrence score (β = 4.81 [1.71-7.92]). Our NHS-derived early menarche gene expression signature was significantly associated with worse 10-year disease-free survival in METABRIC (N = 952, HR = 1.58 [1.10-2.25]).
CONCLUSIONS: Early menarche is associated with more aggressive molecular tumor characteristics and its gene expression signature within tumors is associated with worse 10-year disease-free survival among women with breast cancer. As the age of onset of menarche continues to decline, understanding its relationship to breast tumor characteristics and prognosis may lead to novel secondary prevention strategies.
2023
2022
BACKGROUND: Breast tumor immune infiltration is clearly associated with improved treatment response and outcomes in breast cancer. However, modifiable patient factors associated with breast cancer immune infiltrates are poorly understood. The Nurses' Health Study (NHS) offers a unique cohort to study immune gene expression in tumor and adjacent normal breast tissue, immune cell-specific immunohistochemistry (IHC), and patient exposures. We evaluated the association of body mass index (BMI) change since age 18, physical activity, and the empirical dietary inflammatory pattern (EDIP) score, all implicated in systemic inflammation, with immune cell-specific expression scores.
METHODS: This population-based, prospective observational study evaluated 882 NHS and NHSII participants diagnosed with invasive breast cancer with detailed exposure and gene expression data. Of these, 262 women (training cohort) had breast tumor IHC for four classic immune cell markers (CD8, CD4, CD20, and CD163). Four immune cell-specific scores were derived via lasso regression using 105 published immune expression signatures' association with IHC. In the remaining 620 patient evaluation cohort, we evaluated association of each immune cell-specific score as outcomes, with BMI change since age 18, physical activity, and EDIP score as predictors, using multivariable-adjusted linear regression.
RESULTS: Among women with paired expression/IHC data from breast tumor tissue, we identified robust correlation between novel immune cell-specific expression scores and IHC. BMI change since age 18 was positively associated with CD4+ (β = 0.16; p = 0.009), and CD163 novel immune scores (β = 0.14; p = 0.04) in multivariable analyses. In other words, for each 10 unit (kg/m2) increase in BMI, the percentage of cells positive for CD4 and CD163 increased 1.6% and 1.4%, respectively. Neither physical activity nor EDIP was significantly associated with any immune cell-specific expression score in multivariable analyses.
CONCLUSIONS: BMI change since age 18 was positively associated with novel CD4+ and CD163+ cell scores in breast cancer, supporting further study of the effect of modifiable factors like weight gain on the immune microenvironment.