Publications by Year: 2021

2021

-Ris Y Collier, Ai, Laura A Smith, and Ananth Karumanchi. (2021) 2021. “Review of the Immune Mechanisms of Preeclampsia and the Potential of Immune Modulating Therapy.”. Human Immunology 82 (5): 362-70. https://doi.org/10.1016/j.humimm.2021.01.004.

Successful pregnancy relies on maternal immunologic tolerance mechanisms limit maladaptive immune responses against the semi-allogeneic fetus and placenta and support fetal growth. Preeclampsia is a common disorder of pregnancy that affects 4-10% of pregnancies and is a leading cause of maternal and neonatal morbidity and mortality. Preeclampsia clinically manifests as maternal hypertension, proteinuria, and progressive multi-organ injury likely triggered by hypoxic injury to the placenta, resulting in local and systemic anti-angiogenic and inflammatory factor production. Despite the steady rising rates of preeclampsia in the United States, effective treatment options are limited to delivery, which improves maternal status often at the cost of prematurity in the newborn. Preeclampsia also increases the lifelong risk of cardiovascular disease for both mother and infant. Thus, identifying new therapeutic targets is a high priority area to improve maternal, fetal, and infant health outcomes. Immune abnormalities in the placenta and in the maternal circulation have been reported to precede the clinical onset of disease. In particular, excessive systemic and placental complement activation and impaired adaptive T cell tolerance with Th1/Th2/Th17/Treg imbalance has been reported in humans and in animal models of preeclampsia. In this review, we focus on the evidence for the immune origins of preeclampsia, discuss the promise of immune modulating therapy for prevention or treatment, and highlight key areas for future research.

-Ris Y Collier, Ai, Rachel Ledyard, Diana Montoya-Williams, Maylene Qiu, Alexandra E Dereix, Minou Raschid Farrokhi, Michele R Hacker, and Heather H Burris. (2021) 2021. “Racial and Ethnic Representation in Epigenomic Studies of Preterm Birth: A Systematic Review.”. Epigenomics 13 (21): 1735-46. https://doi.org/10.2217/epi-2020-0007.

Aim: We conducted a systematic review evaluating race/ethnicity representation in DNA methylomic studies of preterm birth. Data sources: PubMed, EMBASE, CINHAL, Scopus and relevant citations from 1 January 2000 to 30 June 2019. Study appraisal & synthesis methods: Two authors independently identified abstracts comparing DNA methylomic differences between term and preterm births that included race/ethnicity data. Results: 16 studies were included. Black and non-Hispanic Black deliveries were well represented (28%). However, large studies originating from more than 95% White populations were excluded due to unreported race/ethnicity data. Most studies were cross-sectional, allowing for reverse causation. Most studies were also racially/ethnically homogeneous, preventing direct comparison of DNA methylomic differences across race/ethnicities. Conclusion: In DNA methylomic studies, Black women and infants were well represented. However, the literature has limitations and precludes drawing definitive conclusions.

Burwick, Richard M, Sigal Yawetz, Kathryn E Stephenson, Ai -Ris Y Collier, Pritha Sen, Brian G Blackburn, Milunka Kojic, et al. (2021) 2021. “Compassionate Use of Remdesivir in Pregnant Women With Severe Coronavirus Disease 2019.”. Clinical Infectious Diseases : An Official Publication of the Infectious Diseases Society of America 73 (11): e3996-e4004. https://doi.org/10.1093/cid/ciaa1466.

BACKGROUND: Remdesivir is efficacious for severe coronavirus disease 2019 (COVID-19) in adults, but data in pregnant women are limited. We describe outcomes in the first 86 pregnant women with severe COVID-19 who were treated with remdesivir.

METHODS: The reported data span 21 March to 16 June 2020 for hospitalized pregnant women with polymerase chain reaction-confirmed severe acute respiratory syndrome coronavirus 2 infection and room air oxygen saturation ≤94% whose clinicians requested remdesivir through the compassionate use program. The intended remdesivir treatment course was 10 days (200 mg on day 1, followed by 100 mg for days 2-10, given intravenously).

RESULTS: Nineteen of 86 women delivered before their first dose and were reclassified as immediate "postpartum" (median postpartum day 1 [range, 0-3]). At baseline, 40% of pregnant women (median gestational age, 28 weeks) required invasive ventilation, in contrast to 95% of postpartum women (median gestational age at delivery 30 weeks). By day 28 of follow-up, the level of oxygen requirement decreased in 96% and 89% of pregnant and postpartum women, respectively. Among pregnant women, 93% of those on mechanical ventilation were extubated, 93% recovered, and 90% were discharged. Among postpartum women, 89% were extubated, 89% recovered, and 84% were discharged. Remdesivir was well tolerated, with a low incidence of serious adverse events (AEs) (16%). Most AEs were related to pregnancy and underlying disease; most laboratory abnormalities were grade 1 or 2. There was 1 maternal death attributed to underlying disease and no neonatal deaths.

CONCLUSIONS: Among 86 pregnant and postpartum women with severe COVID-19 who received compassionate-use remdesivir, recovery rates were high, with a low rate of serious AEs.

Schmaier, Alec A, Gabriel Pajares Hurtado, Zachary J Manickas-Hill, Kelsey D Sack, Siyu M Chen, Victoria Bhambhani, Juweria Quadir, et al. (2021) 2021. “Tie2 Activation Protects Against Prothrombotic Endothelial Dysfunction in COVID-19.”. MedRxiv : The Preprint Server for Health Sciences. https://doi.org/10.1101/2021.05.13.21257070.

Profound endothelial dysfunction accompanies the microvascular thrombosis commonly observed in severe COVID-19. In the quiescent state, the endothelial surface is anticoagulant, a property maintained at least in part via constitutive signaling through the Tie2 receptor. During inflammation, the Tie2 antagonist angiopoietin-2 (Angpt-2) is released from activated endothelial cells and inhibits Tie2, promoting a prothrombotic phenotypic shift. We sought to assess whether severe COVID-19 is associated with procoagulant dysfunction of the endothelium and alterations in the Tie2-angiopoietin axis. Primary human endothelial cells treated with plasma from patients with severe COVID-19 upregulated the expression of thromboinflammatory genes, inhibited expression of antithrombotic genes, and promoted coagulation on the endothelial surface. Pharmacologic activation of Tie2 with the small molecule AKB-9778 reversed the prothrombotic state induced by COVID-19 plasma in primary endothelial cells. On lung autopsy specimens from COVID-19 patients, we found a prothrombotic endothelial signature as evidenced by increased von Willebrand Factor and loss of anticoagulant proteins. Assessment of circulating endothelial markers in a cohort of 98 patients with mild, moderate, or severe COVID-19 revealed profound endothelial dysfunction indicative of a prothrombotic state. Angpt-2 concentrations rose with increasing disease severity and highest levels were associated with worse survival. These data highlight the disruption of Tie2-angiopoietin signaling and procoagulant changes in endothelial cells in severe COVID-19. Moreover, our findings provide novel rationale for current trials of Tie2 activating therapy with AKB-9778 in severe COVID-19 disease.

-Ris Y Collier, Ai, Katherine McMahan, Jingyou Yu, Lisa H Tostanoski, Ricardo Aguayo, Jessica Ansel, Abishek Chandrashekar, et al. (2021) 2021. “Immunogenicity of COVID-19 MRNA Vaccines in Pregnant and Lactating Women.”. JAMA 325 (23): 2370-80. https://doi.org/10.1001/jama.2021.7563.

IMPORTANCE: Pregnant women are at increased risk of morbidity and mortality from COVID-19 but have been excluded from the phase 3 COVID-19 vaccine trials. Data on vaccine safety and immunogenicity in these populations are therefore limited.

OBJECTIVE: To evaluate the immunogenicity of COVID-19 messenger RNA (mRNA) vaccines in pregnant and lactating women, including against emerging SARS-CoV-2 variants of concern.

DESIGN, SETTING, AND PARTICIPANTS: An exploratory, descriptive, prospective cohort study enrolled 103 women who received a COVID-19 vaccine from December 2020 through March 2021 and 28 women who had confirmed SARS-CoV-2 infection from April 2020 through March 2021 (the last follow-up date was March 26, 2021). This study enrolled 30 pregnant, 16 lactating, and 57 neither pregnant nor lactating women who received either the mRNA-1273 (Moderna) or BNT162b2 (Pfizer-BioNTech) COVID-19 vaccines and 22 pregnant and 6 nonpregnant unvaccinated women with SARS-CoV-2 infection.

MAIN OUTCOMES AND MEASURES: SARS-CoV-2 receptor binding domain binding, neutralizing, and functional nonneutralizing antibody responses from pregnant, lactating, and nonpregnant women were assessed following vaccination. Spike-specific T-cell responses were evaluated using IFN-γ enzyme-linked immunospot and multiparameter intracellular cytokine-staining assays. Humoral and cellular immune responses were determined against the original SARS-CoV-2 USA-WA1/2020 strain as well as against the B.1.1.7 and B.1.351 variants.

RESULTS: This study enrolled 103 women aged 18 to 45 years (66% non-Hispanic White) who received a COVID-19 mRNA vaccine. After the second vaccine dose, fever was reported in 4 pregnant women (14%; SD, 6%), 7 lactating women (44%; SD, 12%), and 27 nonpregnant women (52%; SD, 7%). Binding, neutralizing, and functional nonneutralizing antibody responses as well as CD4 and CD8 T-cell responses were present in pregnant, lactating, and nonpregnant women following vaccination. Binding and neutralizing antibodies were also observed in infant cord blood and breast milk. Binding and neutralizing antibody titers against the SARS-CoV-2 B.1.1.7 and B.1.351 variants of concern were reduced, but T-cell responses were preserved against viral variants.

CONCLUSION AND RELEVANCE: In this exploratory analysis of a convenience sample, receipt of a COVID-19 mRNA vaccine was immunogenic in pregnant women, and vaccine-elicited antibodies were transported to infant cord blood and breast milk. Pregnant and nonpregnant women who were vaccinated developed cross-reactive antibody responses and T-cell responses against SARS-CoV-2 variants of concern.

Vidal, Samuel J, Ai -Ris Y Collier, Jingyou Yu, Katherine McMahan, Lisa H Tostanoski, John D Ventura, Malika Aid, et al. (2021) 2021. “Correlates of Neutralization Against SARS-CoV-2 Variants of Concern by Early Pandemic Sera.”. Journal of Virology 95 (14): e0040421. https://doi.org/10.1128/JVI.00404-21.

Emerging SARS-CoV-2 variants of concern that overcome natural and vaccine-induced immunity threaten to exacerbate the COVID-19 pandemic. Increasing evidence suggests that neutralizing antibody (NAb) responses are a primary mechanism of protection against infection. However, little is known about the extent and mechanisms by which natural immunity acquired during the early COVID-19 pandemic confers cross-neutralization of emerging variants. In this study, we investigated cross-neutralization of the B.1.1.7 and B.1.351 SARS-CoV-2 variants in a well-characterized cohort of early pandemic convalescent subjects. We observed modestly decreased cross-neutralization of B.1.1.7 but a substantial 4.8-fold reduction in cross-neutralization of B.1.351. Correlates of cross-neutralization included receptor binding domain (RBD) and N-terminal domain (NTD) binding antibodies, homologous NAb titers, and membrane-directed T cell responses. These data shed light on the cross-neutralization of emerging variants by early pandemic convalescent immune responses. IMPORTANCE Widespread immunity to SARS-CoV-2 will be necessary to end the COVID-19 pandemic. NAb responses are a critical component of immunity that can be stimulated by natural infection as well as vaccines. However, SARS-CoV-2 variants are emerging that contain mutations in the spike gene that promote evasion from NAb responses. These variants may therefore delay control of the COVID-19 pandemic. We studied whether NAb responses from early COVID-19 convalescent patients are effective against the two SARS-CoV-2 variants, B.1.1.7 and B.1.351. We observed that the B.1.351 variant demonstrates significantly reduced susceptibility to early pandemic NAb responses. We additionally characterized virological, immunological, and clinical features that correlate with cross-neutralization. These studies increase our understanding of emerging SARS-CoV-2 variants.

-Ris Y Collier, Ai, Catherine M Brown, Katherine Mcmahan, Jingyou Yu, Jinyan Liu, Catherine Jacob-Dolan, Abishek Chandrashekar, et al. (2021) 2021. “Immune Responses in Fully Vaccinated Individuals Following Breakthrough Infection With the SARS-CoV-2 Delta Variant in Provincetown, Massachusetts.”. MedRxiv : The Preprint Server for Health Sciences. https://doi.org/10.1101/2021.10.18.21265113.

BACKGROUND: A cluster of over a thousand infections with the SARS-CoV-2 delta variant was identified in a predominantly fully vaccinated population in Provincetown, Massachusetts in July 2021. Immune responses in breakthrough infections with the SARS-CoV-2 delta variant remain to be defined.

METHODS: Humoral and cellular immune responses were assessed in 35 vaccinated individuals who were tested for SARS-CoV-2 in the Massachusetts Department of Public Health outbreak investigation.

RESULTS: Vaccinated individuals who tested positive for SARS-CoV-2 demonstrated substantially higher antibody responses than vaccinated individuals who tested negative for SARS-CoV-2, including 28-fold higher binding antibody titers and 34-fold higher neutralizing antibody titers against the SARS-CoV-2 delta variant. Vaccinated individuals who tested positive also showed 4.4-fold higher Spike-specific CD8+ T cell responses against the SARS-CoV-2 delta variant than vaccinated individuals who tested negative.

CONCLUSIONS: Fully vaccinated individuals developed robust anamnestic antibody and T cell responses following infection with the SARS-CoV-2 delta variant. These data suggest important immunologic benefits of vaccination in the context of breakthrough infections.

Schmaier, Alec A, Gabriel M Pajares Hurtado, Zachary J Manickas-Hill, Kelsey D Sack, Siyu M Chen, Victoria Bhambhani, Juweria Quadir, et al. (2021) 2021. “Tie2 Activation Protects Against Prothrombotic Endothelial Dysfunction in COVID-19.”. JCI Insight 6 (20). https://doi.org/10.1172/jci.insight.151527.

Endothelial dysfunction accompanies the microvascular thrombosis commonly observed in severe COVID-19. Constitutively, the endothelial surface is anticoagulant, a property maintained at least in part via signaling through the Tie2 receptor. During inflammation, the Tie2 antagonist angiopoietin-2 (Angpt-2) is released from endothelial cells and inhibits Tie2, promoting a prothrombotic phenotypic shift. We sought to assess whether severe COVID-19 is associated with procoagulant endothelial dysfunction and alterations in the Tie2/angiopoietin axis. Primary HUVECs treated with plasma from patients with severe COVID-19 upregulated the expression of thromboinflammatory genes, inhibited the expression of antithrombotic genes, and promoted coagulation on the endothelial surface. Pharmacologic activation of Tie2 with the small molecule AKB-9778 reversed the prothrombotic state induced by COVID-19 plasma in primary endothelial cells. Lung autopsies from patients with COVID-19 demonstrated a prothrombotic endothelial signature. Assessment of circulating endothelial markers in a cohort of 98 patients with mild, moderate, or severe COVID-19 revealed endothelial dysfunction indicative of a prothrombotic state. Angpt-2 concentrations rose with increasing disease severity, and the highest levels were associated with worse survival. These data highlight the disruption of Tie2/angiopoietin signaling and procoagulant changes in endothelial cells in severe COVID-19. Our findings provide rationale for current trials of Tie2-activating therapy with AKB-9778 in COVID-19.