Analyses of genome-wide association studies (GWAS) for complex disorders usually identify common variants with a relatively small effect size that only explain a small proportion of phenotypic heritability. Several studies have suggested that a significant fraction of heritability may be explained by low-frequency (minor allele frequency (MAF) of 1-5 %) and rare-variants that are not contained in the commercial GWAS genotyping arrays (Schork et al., Curr Opin Genet Dev 19:212, 2009). Rare variants can also have relatively large effects on risk for developing human diseases or disease phenotype (Cruchaga et al., PLoS One 7:e31039, 2012). However, it is necessary to perform next-generation sequencing (NGS) studies in a large population (>4,000 samples) to detect a significant rare-variant association. Several NGS methods, such as custom capture sequencing and amplicon-based sequencing, are designed to screen a small proportion of the genome, but most of these methods are limited in the number of samples that can be multiplexed (i.e. most sequencing kits only provide 96 distinct index). Additionally, the sequencing library preparation for 4,000 samples remains expensive and thus conducting NGS studies with the aforementioned methods are not feasible for most research laboratories.The need for low-cost large scale rare-variant detection makes pooled-DNA sequencing an ideally efficient and cost-effective technique to identify rare variants in target regions by sequencing hundreds to thousands of samples. Our recent work has demonstrated that pooled-DNA sequencing can accurately detect rare variants in targeted regions in multiple DNA samples with high sensitivity and specificity (Jin et al., Alzheimers Res Ther 4:34, 2012). In these studies we used a well-established pooled-DNA sequencing approach and a computational package, SPLINTER (short indel prediction by large deviation inference and nonlinear true frequency estimation by recursion) (Vallania et al., Genome Res 20:1711, 2010), for accurate identification of rare variants in large DNA pools. Given an average sequencing coverage of 30× per haploid genome, SPLINTER can detect rare variants and short indels up to 4 base pairs (bp) with high sensitivity and specificity (up to 1 haploid allele in a pool as large as 500 individuals). Step-by-step instructions on how to conduct pooled-DNA sequencing experiments and data analyses are described in this chapter.
Publications
2016
2015
BACKGROUND: TREM2 encodes for triggering receptor expressed on myeloid cells 2 and has rare, coding variants that associate with risk for late-onset Alzheimer's disease (LOAD) in Caucasians of European and North-American origin. This study evaluated the role of TREM2 in LOAD risk in African-American (AA) subjects. We performed exonic sequencing and validation in two independent cohorts of >800 subjects. We selected six coding variants (p.R47H, p.R62H, p.D87N, p.E151K, p.W191X, and p.L211P) for case-control analyses in a total of 906 LOAD cases vs. 2,487 controls.
RESULTS: We identified significant LOAD risk association with p.L211P (p=0.01, OR=1.27, 95%CI=1.05-1.54) and suggestive association with p.W191X (p=0.08, OR=1.35, 95%CI=0.97-1.87). Conditional analysis suggests that p.L211P, which is in linkage disequilibrium with p.W191X, may be the stronger variant of the two, but does not rule out independent contribution of the latter. TREM2 p.L211P resides within the cytoplasmic domain and p.W191X is a stop-gain mutation within the shorter TREM-2V transcript. The coding variants within the extracellular domain of TREM2 previously shown to confer LOAD risk in Caucasians were extremely rare in our AA cohort and did not associate with LOAD risk.
CONCLUSIONS: Our findings suggest that TREM2 coding variants also confer LOAD risk in AA, but implicate variants within different regions of the gene than those identified for Caucasian subjects. These results underscore the importance of investigating different ethnic populations for disease risk variant discovery, which may uncover allelic heterogeneity with potentially diverse mechanisms of action.
Autosomal dominant adult-onset neuronal ceroid lipofuscinosis (AD-ANCL) is a multisystem disease caused by mutations in the DNAJC5 gene. DNAJC5 encodes Cysteine String Protein-alpha (CSPα), a putative synaptic protein. AD-ANCL has been traditionally considered a lysosomal storage disease based on the intracellular accumulation of ceroid material. Here, we report for the first time the pathological findings of a patient in a clinically early stage of disease, which exhibits the typical neuronal intracellular ceroid accumulation and incipient neuroinflammation but no signs of brain atrophy, neurodegeneration or massive synaptic loss. Interestingly, we found minimal or no apparent reductions in CSPα or synaptophysin in the neuropil. In contrast, brain homogenates from terminal AD-ANCL patients exhibit significant reductions in SNARE-complex forming presynaptic protein levels, including a significant reduction in CSPα and SNAP-25. Frozen samples for the biochemical analyses of synaptic proteins were not available for the early stage AD-ANLC patient. These results suggest that the degeneration seen in the patients with AD-ANCL reported here might be a consequence of both the early effects of CSPα mutations at the cellular soma, most likely lysosome function, and subsequent neuronal loss and synaptic dysfunction.
2014
Genome-wide association studies (GWAS) have identified several risk variants for late-onset Alzheimer's disease (LOAD). These common variants have replicable but small effects on LOAD risk and generally do not have obvious functional effects. Low-frequency coding variants, not detected by GWAS, are predicted to include functional variants with larger effects on risk. To identify low-frequency coding variants with large effects on LOAD risk, we carried out whole-exome sequencing (WES) in 14 large LOAD families and follow-up analyses of the candidate variants in several large LOAD case-control data sets. A rare variant in PLD3 (phospholipase D3; Val232Met) segregated with disease status in two independent families and doubled risk for Alzheimer's disease in seven independent case-control series with a total of more than 11,000 cases and controls of European descent. Gene-based burden analyses in 4,387 cases and controls of European descent and 302 African American cases and controls, with complete sequence data for PLD3, reveal that several variants in this gene increase risk for Alzheimer's disease in both populations. PLD3 is highly expressed in brain regions that are vulnerable to Alzheimer's disease pathology, including hippocampus and cortex, and is expressed at significantly lower levels in neurons from Alzheimer's disease brains compared to control brains. Overexpression of PLD3 leads to a significant decrease in intracellular amyloid-β precursor protein (APP) and extracellular Aβ42 and Aβ40 (the 42- and 40-residue isoforms of the amyloid-β peptide), and knockdown of PLD3 leads to a significant increase in extracellular Aβ42 and Aβ40. Together, our genetic and functional data indicate that carriers of PLD3 coding variants have a twofold increased risk for LOAD and that PLD3 influences APP processing. This study provides an example of how densely affected families may help to identify rare variants with large effects on risk for disease or other complex traits.
IMPORTANCE: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease in which microglia play a significant and active role. Recently, a rare missense variant (p.R47H) in the microglial activating gene TREM2 was found to increase the risk of several neurodegenerative diseases, including Alzheimer disease. Whether the p.R47H variant is a risk factor for ALS is not known.
OBJECTIVES: To determine whether p.R47H (rs75932628) in TREM2 is a risk factor for ALS and assess whether TREM2 expression is dysregulated in disease.
DESIGN, SETTING, AND PARTICIPANTS: Samples of DNA from 923 individuals with sporadic ALS and 1854 healthy control individuals self-reported as non-Hispanic white were collected from ALS clinics in the United States and genotyped for the p.R47H variant in TREM2. Clinical data were obtained on ALS participants for genotype/phenotype correlations. Expression of TREM2 was measured by quantitative polymerase chain reaction and compared in spinal cord samples from 18 autopsied patients with ALS and 12 neurologically healthy controls, as well as from wild-type and transgenic SOD1G93A mice.
MAIN OUTCOMES AND MEASURES: Minor allele frequency of rs75932628 and relative expression of TREM2.
RESULTS: The TREM2 variant p.R47H was more common in patients with ALS than in the controls and is therefore a significant risk factor for ALS (odds ratio, 2.40; 95% CI, 1.29-4.15; P = 4.1×10-3). Furthermore, TREM2 expression was increased in spinal cord samples from ALS patients and SOD1G93A mice (P = 2.8×10-4 and P = 2.8×10-9, respectively), confirming dysregulated TREM2 in disease. Expression of TREM2 in the human spinal cord was negatively correlated with survival (P = .04) but not with other phenotypic aspects of disease.
CONCLUSIONS AND RELEVANCE: This study demonstrates that the TREM2 p.R47H variant is a potent risk factor for sporadic ALS. To our knowledge, these findings identify the first genetic influence on neuroinflammation in ALS and highlight the TREM2 signaling pathway as a therapeutic target in ALS and other neurodegenerative diseases.
We recently showed that mutation of the VPS35 gene can cause late-onset Parkinson's disease. In the present study we sequenced 702 affected subjects from the Mayo Clinic Parkinson's disease patient-control series for the VPS29 and VPS26A/B genes. We identified only 2 rare nonsynonymous variants in the VPS26A p.K93E and VPS29 p.N72H. The results show that mutations in the genes composing the retromer cargo recognition subunit are not a common cause of Parkinson's disease.
The triggering receptor expressed on myeloid 2 (TREM2) is an immune phagocytic receptor expressed on brain microglia known to trigger phagocytosis and regulate the inflammatory response. Homozygous mutations in TREM2 cause Nasu-Hakola disease, a rare recessive form of dementia. A heterozygous TREM2 variant, p.R47H, was recently shown to increase Alzheimer''s disease (AD) risk. We hypothesized that if TREM2 is truly an AD risk gene, there would be additional rare variants in TREM2 that substantially affect AD risk. To test this hypothesis, we performed pooled sequencing of TREM2 coding regions in 2082 AD cases and 1648 cognitively normal elderly controls of European American descent. We identified 16 non-synonymous variants, six of which were not identified in previous AD studies. Two variants, p.R47H [P = 9.17 × 10(-4), odds ratio (OR) = 2.63 (1.44-4.81)] and p.R62H [P = 2.36 × 10(-4), OR = 2.36 (1.47-3.80)] were significantly associated with disease risk in single-variant analyses. Gene-based tests demonstrate variants in TREM2 are genome-wide significantly associated with AD [PSKAT-O = 5.37 × 10(-7); OR = 2.55 (1.80-3.67)]. The association of TREM2 variants with AD is still highly significant after excluding p.R47H [PSKAT-O = 7.72 × 10(-5); OR = 2.47 (1.62-3.87)], indicating that additional TREM2 variants affect AD risk. Genotyping in available family members of probands suggested that p.R47H (P = 4.65 × 10(-2)) and p.R62H (P = 6.87 × 10(-3)) were more frequently seen in AD cases versus controls within these families. Gel electrophoresis analysis confirms that at least three TREM2 transcripts are expressed in human brains, including one encoding a soluble form of TREM2.
A rare heterozygous TREM2 variant p.R47H (rs75932628) has been associated with an increased risk for Alzheimer's disease (AD). We aimed to investigate the clinical presentation, neuropsychological profile, and regional pattern of gray matter and white matter loss associated with the TREM2 variant p.R47H, and to establish which regions best differentiate p.R47H carriers from noncarriers in 2 sample sets (Spanish and Alzheimer's Disease Neuroimaging Initiative, ADNI1). This was a cross-sectional study including a total number of 16 TREM2 p.R47H carriers diagnosed with AD or mild cognitive impairment, 75 AD p.R47H noncarriers and 75 cognitively intact TREM2 p.R47H noncarriers. Spanish AD TREM2 p.R47H carriers showed apraxia (9 of 9) and psychiatric symptoms such as personality changes, anxiety, paranoia, or fears more frequently than in AD noncarriers (corrected p = 0.039). For gray matter and white matter volumetric brain magnetic resonance imaging voxelwise analyses, we used statistical parametric mapping (SPM8) based on the General Linear Model. We used 3 different design matrices with a full factorial design. Voxel-based morphometry analyses were performed separately in the 2 sample sets. The absence of interset statistical differences allowed us to perform joint and conjunction analyses. Independent voxel-based morphometry analysis of the Spanish set as well as conjunction and joint analyses revealed substantial gray matter loss in orbitofrontal cortex and anterior cingulate cortex with relative preservation of parietal lobes in AD and/or mild cognitive impairment TREM2 p.R47H carriers, suggesting that TREM2 p.R47H variant is associated with certain clinical and neuroimaging AD features in addition to the increased TREM2 p.R47H atrophy in temporal lobes as described previously. The high frequency of pathologic behavioral symptoms, combined with a preferential frontobasal gray matter cortical loss, suggests that frontobasal and temporal regions could be more susceptible to the deleterious biological effects of the TREM2 variant p.R47H.
2013
Lacus, ultrices in ultrices tellus odio nunc urna. Massa aenean sed ipsum praesent enim. Porttitor iaculis augue pulvinar nam feugiat. Aliquam morbi ut ultricies elementum adipiscing purus proin semper. Viverra accumsan tempus, vitae auctor a. Dictumst cras dui sit feugiat. Enim nulla pulvinar urna sit eu placerat.
Nascetur nisi, tortor velit et ipsum commodo. Tempor massa, non suscipit at sagittis morbi eget euismod.