Abstract
Lower urinary tract symptoms (LUTS) affect approximately 50% of the population over 40 years of age and are strongly associated with obesity and metabolic syndrome. Adipose tissue plays a key role in obesity/metabolic syndrome by releasing adipokines that regulate systemic energy/lipid metabolism, insulin resistance, and inflammation. Adiponectin (ADPN), the most abundant adipokine, modulates energy/metabolism homeostasis through its insulin-sensitizing and antiinflammatory effects. Human plasma ADPN levels are inversely associated with obesity and diabetes. To the best of our knowledge, the role of adipokines such as ADPN in the LUTS associated with obesity/metabolic syndrome remains unknown. We have tested such a possible role in a global ADPN-knockout (Adpn-/-) mouse model. Adpn-/- mice exhibited increased voiding frequency, small voids, and reduced bladder smooth muscle (BSM) contractility, with absence of purinergic contraction. Molecular examination indicated significantly altered metabolic and purinergic pathways. The ADPN receptor agonist AdipoRon was found to abolish acute BSM contraction. Intriguingly, both AMPK activators and inhibitors also abolished BSM purinergic contraction. These data indicate the important contribution of what we believe is a novel ADPN signaling pathway to the regulation of BSM contractility. Dysregulation of this ADPN signaling pathway might be an important mechanism leading to LUTS associated with obesity/metabolic syndrome.