- Home
- Publications
- Mark L Zeidel
Publications by Author: Mark L Zeidel
Z
Y
The bladder undergoes large shape changes as it fills and empties and experiences complex mechanical forces. These forces become abnormal in diseases of the lower urinary tract such as overactive bladder, neurogenic bladder, and urinary retention. As the primary mechanosensors linking the actin cytoskeleton to the extracellular matrix (ECM), integrins are likely to play vital roles in maintaining bladder smooth muscle (BSM) homeostasis. In a tamoxifen-inducible smooth muscle conditional knockout of β1-integrin, there was concomitant loss of α1- and α3-integrins from BSM and upregulation of αV- and β3-integrins. Masson's staining showed a reduction in smooth muscle with an increase in collagenous ECM. Functionally, mice exhibited a changing pattern of urination by voiding spot assay up to 8 wk after tamoxifen. By 8 wk, there was increased frequency with reductions in voided volume, consistent with overactivity. Cystometrograms confirmed that there was a significant reduction in intercontractile interval with reduced maximal bladder pressure. Muscle strip myography revealed a loss of contraction force in response to electrical field stimulation, that was entirely due to the loss of muscarinic contractility. Quantitative western blotting showed a loss of M3 receptor and no change in P2X1. qPCR on ECM and interstitial genes revealed loss of Ntpd2, a marker of an interstitial cell subpopulation; and an upregulation of S100A4, which is often associated with fibroblasts. Collectively, the data show that the loss of appropriate mechanosensation through integrins results in cellular and extracellular remodeling, and concomitant bladder dysfunction that resembles lower urinary tract symptoms seen in older people.
X
Acute urinary retention (AUR) is a common urological emergency and affects a significant patient population. The inability to eliminate urine may lead to permanent damage to the bladder's structure and functioning. However, we know little about the underlying molecular sequelae to the urine retention. To closely mirror the potential high pressures that patients with AUR could experience, we catheterized anesthetized female mice via the urethra and filled the bladder by pumping saline (25 µL/min) into the bladder lumen to 50 cm or 80 cm water pressure. A water column with designated height (50 or 80 cm) was then adjusted to maintain constant pressure in the bladder lumen for 30 minutes. Functional and morphological evaluations were performed from 0 to 24 hours after AUR treatment. Mice exhibited incontinence and overactivity with diminished voiding pressure. Significant injury was confirmed which revealed bladders with disrupted urothelial barrier, edematous lamina propria, and distorted muscle bundles. Bladder smooth muscle (BSM) from pressure-treated mice have significantly diminished contraction force, suggesting that bladder voiding dysfunction can be attributed to impaired BSM contractility. Indeed, dysregulation of acetylcholine and purinergic signaling pathways were demonstrated, indicating that reduced efficacy of these pathways contributes to impaired BSM contractility. Finally, altered expression of β1-integrin and extracellular matrix mediated mechanotransduction pathways were detected, suggesting a profound remodeling process. These data demonstrated an easy to perform, quantifiable, and reproducible AUR mouse model, which mimics well the characteristics of human AUR patients, and our data generate new insights into the molecular mechanisms that occur following AUR.
V
BACKGROUND: Our understanding of the neural circuits controlling micturition and continence is constrained by a paucity of techniques for measuring voiding in awake, behaving mice.
NEW METHOD: To facilitate progress in this area, we developed a new, non-invasive assay, micturition video thermography (MVT), using a down-facing thermal camera above mice on a filter paper floor.
RESULTS: Most C57B6/J mice void infrequently, with a stereotyped behavioral sequence, and usually in a corner. The timing of each void is indicated by the warm thermal contrast of freshly voided urine. Over the following 10-15 min, urine cools to ∼3 °C below the ambient temperature and spreads radially in the filter paper. By measuring the area of cool contrast comprising this "thermal void spot," we can derive the initially voided volume. Thermal videos also reveal mouse behaviors including a home-corner preference apart from void spots, and a stereotyped, seconds-long pause while voiding.
COMPARISON WITH EXISTING METHODS AND CONCLUSIONS: MVT is a robust, non-invasive method for measuring the timing, volume, and location of voiding. It improves on an existing technique, the void spot assay, by adding timing information, and unlike the cystometrogram preparation, MVT does not require surgical catheterization. Combining MVT with current neuroscience techniques will improve our understanding of the neural circuits that control continence, which is important for addressing the growing number of patients with urinary incontinence as the population ages.
R
BACKGROUND: AKI is a significant complication of coronavirus disease 2019 (COVID-19), with no effective therapy. Niacinamide, a vitamin B3 analogue, has some evidence of efficacy in non-COVID-19-related AKI. The objective of this study is to evaluate the association between niacinamide therapy and outcomes in patients with COVID-19-related AKI.
METHODS: We implemented a quasi-experimental design with nonrandom, prospective allocation of niacinamide in 201 hospitalized adult patients, excluding those with baseline eGFR <15 ml/min per 1.73 m2 on or off dialysis, with COVID-19-related AKI by Kidney Disease Improving Global Outcomes (KDIGO) criteria, in two hospitals with identical COVID-19 care algorithms, one of which additionally implemented treatment with niacinamide for COVID-19-related AKI. Patients on the niacinamide protocol (B3 patients) were compared against patients at the same institution before protocol commencement and contemporaneous patients at the non-niacinamide hospital (collectively, non-B3 patients). The primary outcome was a composite of death or RRT.
RESULTS: A total of 38 out of 90 B3 patients and 62 out of 111 non-B3 patients died or received RRT. Using multivariable Cox proportional hazard modeling, niacinamide was associated with a lower risk of RRT or death (HR, 0.64; 95% CI, 0.40 to 1.00; P=0.05), an association driven by patients with KDIGO stage-2/3 AKI (HR, 0.29; 95% CI, 0.13 to 0.65; P=0.03; P interaction with KDIGO stage=0.03). Total mortality also followed this pattern (HR, 0.17; 95% CI, 0.05 to 0.52; in patients with KDIGO stage-2/3 AKI, P=0.002). Serum creatinine after AKI increased by 0.20 (SEM, 0.08) mg/dl per day among non-B3 patients with KDIGO stage-2/3 AKI, but was stable among comparable B3 patients (+0.01 [SEM, 0.06] mg/dl per day; P interaction=0.03).
CONCLUSIONS: Niacinamide was associated with lower risk of RRT/death and improved creatinine trajectory among patients with severe COVID-19-related AKI. Larger randomized studies are necessary to establish a causal relationship.
BACKGROUND: Few generalists engage in basic science research or feel comfortable teaching physiology at the bedside. This may reflect a lack of understanding or confidence teaching physiologic principles.
AIM: To inspire general internists to relearn and teach physiology in clinical practice.
SETTING: An active biomedical research laboratory.
PARTICIPANTS: We educated 67 faculty participants (4 primary care, 59 hospitalists, and 4 other specialties) from 24 medical centers, representing 17 states.
PROGRAM DESCRIPTION: The 5-day course was structured around re-learning basic physiology principles and developing teaching skills. Participants engaged in hands-on experiments through 4 modules using aquatic species, each paired with a physiology content primer. Participants also developed teaching scripts based on their experiments.
PROGRAM EVALUATION: Post-course surveys revealed that 97% felt confident teaching physiology at the bedside, 100% felt the course enhanced their understanding of the mechanisms of disease, and there was a significant improvement in self-reported teaching ability.
DISCUSSION: An immersive, hands-on faculty development course that integrated physiology with clinical decision-making increased participants' comfort level and self-rated ability to teach and incorporate physiology in their clinical work. We believe faculty development is one potential solution to the growing chasm between clinicians and scientists in general medicine.
In response to decreasing numbers of individuals entering into nephrology fellowships, the American Society of Nephrology launched Kidney TREKS (Tutored Research and Education for Kidney Scholars) to stimulate interest in nephrology among medical students, graduate students, and postdoctoral fellows. The program combines a one-week intensive exposure to kidney physiology with a longitudinal mentorship program at the participants' home institutions. Ten years in, an analysis was conducted to assess its effectiveness. We surveyed participants to assess their opinions regarding nephrology before and after the course and followed them longitudinally to determine their career choices. TREKS applicants who were not selected to participate were used as a comparison group. 381 people participated in the program and 242 completed the survey. After TREKS, both medical students and graduate students showed increased interest in nephrology, with rank scores of 5.6±0.2 pre- to 7.5±0.1 post-course for medical students (mean ± standard deviation, n=189, p=0.001) and 7.3±0.3 to 8.7±0.3 (n=53, p=0.001) for graduate students. In long term follow-up, TREKS medical students chose a nephrology pipeline residency at a higher rate than medical students overall (57% vs. 31%, p=0.01) and TREKS applicants who did not participate (47% vs. 31%, p=0.04). Nephrology fellowship rates for these groups exceeded the general population but did not significantly differ between TREKS participants and applicants. PhD students and postdoctoral TREKS participants had a higher rate of participating in nephrology research compared to TREKS applicants (66% vs. 30%, p=0.01). In summary, the ASN Kidney TREKS program has demonstrated that it can improve interest in nephrology in the short term and increase the number of individuals going into nephrology careers. This long-term effect is most evident in PhD students and postdoctoral participants. Further study is needed to assess the impact of TREKS on enrollment in nephrology fellowship programs.
N
The "dorsal pons", or "dorsal pontine tegmentum" (dPnTg), is part of the brainstem. It is a complex, densely packed region whose nuclei are involved in regulating many vital functions. Notable among them are the parabrachial nucleus, the Kölliker Fuse, the Barrington nucleus, the locus coeruleus, and the dorsal, laterodorsal, and ventral tegmental nuclei. In this study, we applied single-nucleus RNA-seq (snRNA-seq) to resolve neuronal subtypes based on their unique transcriptional profiles and then used multiplexed error robust fluorescence in situ hybridization (MERFISH) to map them spatially. We sampled 1 million cells across the dPnTg and defined the spatial distribution of over 120 neuronal subtypes. Our analysis identified an unpredicted high transcriptional diversity in this region and pinpointed the unique marker genes of many neuronal subtypes. We also demonstrated that many neuronal subtypes are transcriptionally similar between humans and mice, enhancing this study's translational value. Finally, we developed a freely accessible, GPU and CPU-powered dashboard ( http://harvard.heavy.ai:6273/ ) that combines interactive visual analytics and hardware-accelerated SQL into a data science framework to allow the scientific community to query and gain insights into the data.
K
Diabetic bladder dysfunction is a frequent complication of diabetes. Although many mouse models of diabetes now exist, there has been little systematic effort to characterize them for the timing of onset and severity of bladder dysfunction. We monitored metabolic status and tested bladder function by void spot assay and limited anesthetized cystometry in both male and female mice of three models of obesity and diabetes: a type 1 diabetes model (the Akita mouse) and two type 2 diabetes models [the diet-induced obese (DIO) model and the ob/ob mouse]. Akita mice had insulin pellets implanted subcutaneously every 3 mo to mimic poorly controlled type 1 diabetes in humans. Mice were hyperglycemic by 48 days after implants. Female mice exhibited no bladder dysfunction at any age up to 20 mo and gained weight normally. In contrast, by 7 mo, male Akita mice developed a profound polyuria and failed to show normal weight gain. There were no observable signs of bladder dysfunction in either sex. DIO mice on high/low-fat diets for 16 mo exhibited mild hyperglycemia in female mice (not in male mice), mild weight gain, and no evidence of bladder dysfunction. Ob/ob mice were followed for 8 mo and became extremely obese. Male and female mice were glucose intolerant, insulin intolerant, and hyperinsulinemic at 4 mo. By 8 mo, their metabolic status had improved but was still abnormal. Urine volume increased in male mice but not in female mice. Bladder dysfunction was observed in the spotting patterns of female mice at 4 and 6 mo of age, resolving by 8 mo. We conclude there are dramatic sex-related differences in lower urinary tract function in these models. Male Akita mice may be a good model for polyuria-related bladder remodeling, whereas female ob/ob mice may better mimic storage problems related to loss of outlet control in a setting of type 2 diabetes complicated by obesity.