Aquaporin 1 is a membrane water channel protein, which was studied here in spiny dogfish (Squalus acanthias) osmoregulatory tissues using a variety of techniques. The cloning of aquaporin 1 (AQP1) in the spiny dogfish identified a splice variant version of the mRNA/protein (AQP1SV1/AQP1SV1). Polymerase chain reaction (PCR) in a range of tissues showed AQP1 to be expressed at very high levels in the rectal gland with ubiquitous mRNA expression at lower levels in other tissues. Northern blotting showed that AQP1 had a mRNA size of 5.3 kb in kidney total RNA. The level of AQP1 mRNA was significantly lower in the rectal glands of fish acclimated to 120% seawater (SW; vs. 75% SW (p = 0.0007) and 100% SW (p = 0.0025)) but was significantly higher in those fish in the kidney (vs. 100% SW (p = 0.0178)) and intestine (vs. 75% SW (p= 0.0355) and 100% SW (p = 0.0285)). Quantitative PCR determined that AQP1SV1 mRNA levels were also significantly lower in the rectal glands of both 120% (p = 0.0134) and 100% SW (p = 0.0343) fish in comparison to 75% SW-acclimated dogfish. Functional expression in Xenopus oocytes showed that AQP1 exhibited significant apparent membrane water permeability (p = 0.000008-0.0158) across a range of pH values, whereas AQP1SV1 showed no similar permeability. Polyclonal antibodies produced against AQP1 (AQP1 and AQP1/2 antibodies) and AQP1SV1 had bands at the expected sizes of 28 kDa and 24 kDa, respectively, as well as some other banding. The weak AQP1 antibody and the stronger AQP1/2 antibody exhibited staining in the apical membranes of rectal gland secretory tubules, particularly towards the periphery of the gland. In the gill, the AQP1/2 antibody in particular showed staining in secondary-lamellar pavement-cell basal membranes, and in blood vessels and connective tissue in the gill arch. In the spiral valve intestine side wall and valve flap, the AQP1/2 antibody stained muscle tissue and blood vessel walls and, after tyramide signal amplification, showed some staining in the apical membranes of epithelial cells at the ends of the luminal surface of epithelial folds. In the rectum/colon, there was also some muscle and blood vessel staining, but the AQP1 and AQP1/2 antibodies both stained a layer of cells at the base of the surface epithelium. In the kidney convoluted bundle zone, all three antibodies stained bundle sheath membranes to variable extents, and the AQP1/2 antibody also showed staining in the straight bundle zone bundle sheath. In the kidney sinus zone, the AQP1/2 antibody stained the apical membranes of late distal tubule (LDT) nephron loop cells most strongly, with the strongest staining in the middle of the LDT loop and in patches towards the start of the LDT loop. There was also a somewhat less strong staining of segments of the first sinus zone nephron loop, particularly in the intermediate I (IS-I) tubule segment. Some tubules appeared to show no or only low levels of staining. The results suggest that AQP1 plays a role in rectal gland fluid secretion, kidney fluid reabsorption and gill pavement-cell volume regulation and probably a minor role in intestinal/rectal/colon fluid absorption.
- Home
- Publications
- Christopher P Cutler
Publications by Author: Christopher P Cutler
C
Complementary DNAs (cDNAs) for two aquaporin water channel genes (AQP3 and AQP15) were amplified cloned and sequenced to initiate this study. Northern blot analysis was carried out to confirm the mRNA sizes of these AQP genes with AQP3 mRNA bands exhibiting sizes of 1.2 and 1.6 k bases and AQP15 had a mRNA band of 2.1 k bases. Northern blot analysis was also performed on kidney and esophagus total RNA samples from fish acclimated to 75%, 100% or 120% seawater (SW). The level of AQP15 mRNA expression was shown to significantly decrease following salinity acclimation from 100 to 120% SW. An opposite but non-significantly different trend was observed for AQP3 mRNA levels. Full length cDNAs were then used to generate AQP3 and AQP15 mRNAs for microinjection into Xenopus oocytes. Both AQP3- and AQP15- microinjected oocytes exhibited significantly elevated apparent water permeability compared to control oocytes at neutral pH. The apparent water permeability was mercury-inhibitable, significantly so in the case of AQP3. AQP3 microinjected oocytes showed pH sensitivity in their apparent water permeability, showing a lack of permeability at acidic pH values. The Carboxyl-terminal derived amino acid sequences of AQP3 and AQP15 were used to generate rabbit affinity-purified polyclonal antibodies. Western blots with the antibodies showed a band of 31.3 kDa for AQP3 in the kidney, with minor bands at 26, 24 and 21 kDa. For AQP15 a band of 26 kDa was seen in gill and kidney. Fainter bands at 28 and 24 kDa were also seen in the kidney. There was also some higher molecular weight banding. None of the bands were seen when the antibodies were pre- blocked with their peptide antigens. Immunohistochemical localization studies were also performed in the gill and spiral valve intestine. In the gill, AQP15 antibody staining was seen sporadically in the membranes of surface epithelial cells of the secondary lamellae. Tyramide amplification of signals was employed in the spiral valve intestine. Tyramide-amplified AQP3 antibody staining was observed in the basal membrane of the invaginated epithelial cell layer of secondary intestinal folds in luminal surface of either the side wall of the spiral valve intestine or in internal valve tissue 'flaps'. For the AQP15 antibody, tyramide-amplified staining was instead found on the apical and to a lesser extent the lateral membranes of the same invaginated epithelial cell layer. The localization of AQP3 and AQP15 in the spiral valve intestine suggests that a trans-cellular water absorption pathway may exist in this tissue.