Publications

2024

Duan B, Qiu C, Lockless SW, Sze SH, Kaplan CD. Higher-order epistasis within Pol II trigger loop haplotypes.. Genetics. 2024;228(4). doi:10.1093/genetics/iyae172

RNA polymerase II (Pol II) has a highly conserved domain, the trigger loop (TL), that controls transcription fidelity and speed. We previously probed pairwise genetic interactions between residues within and surrounding the TL for the purpose of understand functional interactions between residues and to understand how individual mutants might alter TL function. We identified widespread incompatibility between TLs of different species when placed in the Saccharomyces cerevisiae Pol II context, indicating species-specific interactions between otherwise highly conserved TLs and its surroundings. These interactions represent epistasis between TL residues and the rest of Pol II. We sought to understand why certain TL sequences are incompatible with S. cerevisiae Pol II and to dissect the nature of genetic interactions within multiply substituted TLs as a window on higher order epistasis in this system. We identified both positive and negative higher-order residue interactions within example TL haplotypes. Intricate higher-order epistasis formed by TL residues was sometimes only apparent from analysis of intermediate genotypes, emphasizing complexity of epistatic interactions. Furthermore, we distinguished TL substitutions with distinct classes of epistatic patterns, suggesting specific TL residues that potentially influence TL evolution. Our examples of complex residue interactions suggest possible pathways for epistasis to facilitate Pol II evolution.

Rubin M, Lecker SH, Ramkumar N, et al. American Society of Nephrology Kidney TREKS Program.. Journal of the American Society of Nephrology : JASN. Published online 2024. doi:10.1681/ASN.0000000000000384

In response to decreasing numbers of individuals entering into nephrology fellowships, the American Society of Nephrology launched Kidney TREKS (Tutored Research and Education for Kidney Scholars) to stimulate interest in nephrology among medical students, graduate students, and postdoctoral fellows. The program combines a one-week intensive exposure to kidney physiology with a longitudinal mentorship program at the participants' home institutions. Ten years in, an analysis was conducted to assess its effectiveness. We surveyed participants to assess their opinions regarding nephrology before and after the course and followed them longitudinally to determine their career choices. TREKS applicants who were not selected to participate were used as a comparison group. 381 people participated in the program and 242 completed the survey. After TREKS, both medical students and graduate students showed increased interest in nephrology, with rank scores of 5.6±0.2 pre- to 7.5±0.1 post-course for medical students (mean ± standard deviation, n=189, p=0.001) and 7.3±0.3 to 8.7±0.3 (n=53, p=0.001) for graduate students. In long term follow-up, TREKS medical students chose a nephrology pipeline residency at a higher rate than medical students overall (57% vs. 31%, p=0.01) and TREKS applicants who did not participate (47% vs. 31%, p=0.04). Nephrology fellowship rates for these groups exceeded the general population but did not significantly differ between TREKS participants and applicants. PhD students and postdoctoral TREKS participants had a higher rate of participating in nephrology research compared to TREKS applicants (66% vs. 30%, p=0.01). In summary, the ASN Kidney TREKS program has demonstrated that it can improve interest in nephrology in the short term and increase the number of individuals going into nephrology careers. This long-term effect is most evident in PhD students and postdoctoral participants. Further study is needed to assess the impact of TREKS on enrollment in nephrology fellowship programs.

2023

Dutagaci B, Duan B, Qiu C, Kaplan CD, Feig M. Characterization of RNA polymerase II trigger loop mutations using molecular dynamics simulations and machine learning.. PLoS Computational Biology. 2023;19(3):e1010999. doi:10.1371/journal.pcbi.1010999

Catalysis and fidelity of multisubunit RNA polymerases rely on a highly conserved active site domain called the trigger loop (TL), which achieves roles in transcription through conformational changes and interaction with NTP substrates. The mutations of TL residues cause distinct effects on catalysis including hypo- and hyperactivity and altered fidelity. We applied molecular dynamics simulation (MD) and machine learning (ML) techniques to characterize TL mutations in the Saccharomyces cerevisiae RNA Polymerase II (Pol II) system. We did so to determine relationships between individual mutations and phenotypes and to associate phenotypes with MD simulated structural alterations. Using fitness values of mutants under various stress conditions, we modeled phenotypes along a spectrum of continual values. We found that ML could predict the phenotypes with 0.68 R2 correlation from amino acid sequences alone. It was more difficult to incorporate MD data to improve predictions from machine learning, presumably because MD data is too noisy and possibly incomplete to directly infer functional phenotypes. However, a variational auto-encoder model based on the MD data allowed the clustering of mutants with different phenotypes based on structural details. Overall, we found that a subset of loss-of-function (LOF) and lethal mutations tended to increase distances of TL residues to the NTP substrate, while another subset of LOF and lethal substitutions tended to confer an increase in distances between TL and bridge helix (BH). In contrast, some of the gain-of-function (GOF) mutants appear to cause disruption of hydrophobic contacts among TL and nearby helices.

Aron L, Qiu C, Ngian ZK, et al. A neurodegeneration checkpoint mediated by REST protects against the onset of Alzheimer’s disease.. Nature Communications. 2023;14(1):7030. doi:10.1038/s41467-023-42704-6

Many aging individuals accumulate the pathology of Alzheimer's disease (AD) without evidence of cognitive decline. Here we describe an integrated neurodegeneration checkpoint response to early pathological changes that restricts further disease progression and preserves cognitive function. Checkpoint activation is mediated by the REST transcriptional repressor, which is induced in cognitively-intact aging humans and AD mouse models at the onset of amyloid β-protein (Aβ) deposition and tau accumulation. REST induction is mediated by the unfolded protein response together with β-catenin signaling. A consequence of this response is the targeting of REST to genes involved in key pathogenic pathways, resulting in downregulation of gamma secretase, tau kinases, and pro-apoptotic proteins. Deletion of REST in the 3xTg and J20 AD mouse models accelerates Aβ deposition and the accumulation of misfolded and phosphorylated tau, leading to neurodegeneration and cognitive decline. Conversely, viral-mediated overexpression of REST in the hippocampus suppresses Aβ and tau pathology. Thus, REST mediates a neurodegeneration checkpoint response with multiple molecular targets that may protect against the onset of AD.

Luo C, Liu J, Yang J, Xie X, Yu W, Chen H. Minimizing the variables of voiding spot assay for comparison between laboratories.. PeerJ. 2023;11:e15420. doi:10.7717/peerj.15420

The voiding spot assay (VSA) is increasingly being adopted as a standard method for assessing mouse urinary function. However, VSA outcomes are highly sensitive to housing environment and procedural parameters. Many variables exist among laboratories, including analytical software, type of daily housing cage, transportation, and the time of the day. Some of these variables, such as the time of VSA and analytical software, have been shown to result in inconsistency and incomparability of data. In this study, we evaluated whether the results of VSA can be compared across laboratories by minimizing these variables. We found that analytical tools between Fiji and MATLAB are in good agreement in the quantification of VSA parameters, especially primary voiding spot (PVS) parameters. Unexpectedly, we found that mice housed in different daily home cages did not alter voiding patterns in a standard VSA cage. Nonetheless, we still recommend acclimation when performing VSA in unfamiliar cages. Notably, mice are highly sensitive to transportation and the time in the morning versus afternoon, which can induce significant changes in voiding patterns. Therefore, a standardized period among laboratories and allowing 2-3 days of rest for mice acclimation after transportation are necessary for VSA. Finally, we performed VSA using identical procedural parameters in two laboratories from two geographical locations to compare the results of VSA and concluded that it is possible to generate limited comparable VSA data, such as PVS volume.

MacIver B, Bien EM, de Oliveira MG, Hill WG. A Spectrum of Age- and Gender-Dependent Lower Urinary Tract Phenotypes in Three Mouse Models of Type 2 Diabetes.. Metabolites. 2023;13(6). doi:10.3390/metabo13060710

Lower urinary tract symptoms are extremely common in people with diabetes and obesity, but the causes are unclear. Furthermore, it has proven difficult to reliably demonstrate bladder dysfunction in diabetic mouse models, thus limiting the ability to gain mechanistic insights. Therefore, the main objective of this experimental study was to characterize diabetic bladder dysfunction in three promising polygenic mouse models of type 2 diabetes. We performed periodic assessments of glucose tolerance and micturition (void spot assay) for eight to twelve months. Males and females and high-fat diets were tested. NONcNZO10/LtJ mice did not develop bladder dysfunction over twelve months. TALLYHO/JngJ males were severely hyperglycemic from two months of age (fasted blood glucose  550 mg/dL), while females were moderately so. Although males exhibited polyuria, neither they nor the females exhibited bladder dysfunction over nine months. KK.Cg-Ay/J males and females were extremely glucose intolerant. Males exhibited polyuria, a significant increase in voiding frequency at four months (compensation), followed by a rapid drop in voiding frequency by six months (decompensation) which was accompanied by a dramatic increase in urine leakage, indicating loss of outlet control. At eight months, male bladders were dilated. Females also developed polyuria but compensated with larger voids. We conclude KK.Cg-Ay/J male mice recapitulate key symptoms noted in patients and are the best model of the three to study diabetic bladder dysfunction.

Jash S, Banerjee S, Cheng S, et al. Cis P-tau is a central circulating and placental etiologic driver and therapeutic target of preeclampsia.. Nature communications. 2023;14(1):5414. doi:10.1038/s41467-023-41144-6

Preeclampsia (PE) is the leading cause of maternal and fetal mortality globally and may trigger dementia later in life in mothers and their offspring. However, the etiological drivers remain elusive. Cis P-tau is an early etiological driver and blood biomarker in pre-clinical Alzheimer's and after vascular or traumatic brain injury, which can be targeted by stereo-specific antibody, with clinical trials ongoing. Here we find significant cis P-tau in the placenta and serum of PE patients, and in primary human trophoblasts exposed to hypoxia or sera from PE patients due to Pin1 inactivation. Depletion of cis P-tau from PE patient sera by the antibody prevents their ability to disrupt trophoblast invasion and endovascular activity and to cause the PE-like pathological and clinical features in pregnant humanized tau mice. Our studies uncover that cis P-tau is a central circulating etiological driver and its stereo-specific antibody is valuable for early PE diagnosis and treatment.

2022

Sartori AM, Kiss B, Mordasini L, et al. Effects of Deep Brain Stimulation on Lower Urinary Tract Function in Neurological Patients.. European Urology Focus. 2022;8(6):1775-1782. doi:10.1016/j.euf.2022.05.004

BACKGROUND: Deep brain stimulation (DBS) has clear beneficial effects on motor signs in movement disorders, but much less is known about its impact on lower urinary tract (LUT) function.

OBJECTIVE: To evaluate the effects of DBS on LUT function in patients affected by movement disorders.

DESIGN, SETTING, AND PARTICIPANTS: We prospectively enrolled 58 neurological patients affected by movement disorders, who were planned to receive DBS.

INTERVENTION: DBS in the globus pallidus internus, ventral intermediate nucleus of the thalamus, or subthalamic nucleus.

OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Subjective symptom questionnaires (International Prostate Symptom Score) and objective urodynamic studies were carried out before implantation of the DBS leads and several months after surgery. After DBS surgery, urodynamic investigations were performed with DBS ON as well as DBS OFF.

RESULTS AND LIMITATIONS: We enrolled patients suffering from Parkinson's disease (n = 39), dystonia (n = 11), essential tremor (n = 5), Holmes tremor (n = 2), and multiple sclerosis with tremor (n = 1). DBS of the globus pallidus internus resulted in worsening of LUT symptoms in 25% (four of 16) of the cases. DBS of the subthalamic nucleus in patients with Parkinson's disease led to normalization of LUT function in almost 20% (six of 31 patients), while a deterioration was seen in only one (3%) patient. DBS of the ventral intermediate nucleus of the thalamus improved LUT function in two (18%) and deteriorated it in one (9%) patient with tremor.

CONCLUSIONS: DBS effects on LUT varied with stimulation location, highly warranting patient counseling prior to DBS surgery. However, more well-designed, large-volume studies are needed to confirm our findings.

PATIENT SUMMARY: In this report, we looked at outcomes of deep brain stimulation on lower urinary tract function. We found that outcomes varied with stimulation location, concluding that counseling of patients about the effects on lower urinary tract function is highly recommended prior to surgery.

Sartori AM, Hofer AS, Scheuber MI, Rust R, Kessler TM, Schwab ME. Slow development of bladder malfunction parallels spinal cord fiber sprouting and interneurons’ loss after spinal cord transection.. Experimental Neurology. 2022;348:113937. doi:10.1016/j.expneurol.2021.113937

Neurogenic lower urinary tract dysfunction typically develops after spinal cord injury. We investigated the time course and the anatomical changes in the spinal cord that may be causing lower urinary tract symptoms following injury. Rats were implanted with a bladder catheter and external urethral sphincter electromyography electrodes. Animals underwent a large, incomplete spinal transection at the T8/9 spinal level. At 1, 2-3, and 4 weeks after injury, the animals underwent urodynamic investigations. Urodynamic investigations showed detrusor overactivity and detrusor-sphincter-dyssynergia appearing over time at 3-4 weeks after injury. Lower urinary tract dysfunction was accompanied by an increase in density of C-fiber afferents in the lumbosacral dorsal horn. CRF-positive Barrington's and 5-HT-positive bulbospinal projections drastically decreased after injury, with partial compensation for the CRF fibers at 3-4 weeks. Interestingly, a decrease over time was observed in the number of GABAergic neurons in the lumbosacral dorsal horn and lamina X, and a decrease of glutamatergic cells in the dorsal horn. Detrusor overactivity and detrusor-sphincter-dyssynergia might therefore arise from a discrepancy in inhibitory/excitatory interneuron activity in the lumbosacral cord as well as input changes which develop over time after injury. The processes point to spinal plastic changes leading to malfunction of the important physiological pathway of lower urinary tract control.

Sartori AM, Salemi S, Hofer AS, et al. Early Transcutaneous Tibial Nerve Stimulation Acutely Improves Lower Urinary Tract Function in Spinal Cord Injured Rats.. Neurotrauma Reports. 2022;3(1):15-26. doi:10.1089/neur.2021.0058

Despite the fact that a majority of patients with an injury to the spinal cord develop lower urinary tract dysfunction, only few treatment options are available currently once the dysfunction arises. Tibial nerve stimulation has been used in pilot clinical trials, with some promising results. Hence, we investigated whether the early application of transcutaneous tibial nerve stimulation in the animal model of spinal cord injured rats can prevent the development of detrusor overactivity and/or detrusor-sphincter-dyssynergia. Rats were implanted with a bladder catheter and external urethral sphincter electromyography electrodes. A dorsal over-hemisection, resulting in an incomplete spinal cord injury at the T8/9 spinal level, induced immediate bladder paralysis. One week later, the animals received daily tibial nerve or sham stimulation for 15 days. Effects of stimulation on the lower urinary tract function were assessed by urodynamic investigation. Measurements showed improvements of several key parameters of lower urinary tract function-in particular, non-voiding bladder contractions and intravesical pressure-immediately after the completion of the stimulation period in the stimulated animals. These differences extinguished one week later, however. In the dorsal horn of the lumbosacral spinal cord, a small significant increase of the density of C-fiber afferents layers I-II was found in the stimulated animals at four weeks after spinal cord injury. Tibial nerve stimulation applied acutely after spinal cord injury in rats had an immediate beneficial effect on lower urinary tract dysfunction; however, the effect was transitory and did not last over time. To achieve more sustainable, longer lasting effects, further studies are needed looking into different stimulation protocols using optimized stimulation parameters, timing, and treatment schedules.