Publications

2023

Haines, Melanie S, Snimarjot Kaur, Geetanjali Scarff, Meghan Lauze, Anu Gerweck, Meghan Slattery, Nicolas M Oreskovic, et al. (2023) 2023. “Male Runners With Lower Energy Availability Have Impaired Skeletal Integrity Compared to Nonathletes.”. The Journal of Clinical Endocrinology and Metabolism 108 (10): e1063-e1073. https://doi.org/10.1210/clinem/dgad215.

CONTEXT: Female athletes, particularly runners, with insufficient caloric intake for their energy expenditure [low energy availability (EA) or relative energy deficiency] are at risk for impaired skeletal integrity. Data are lacking in male runners.

OBJECTIVE: To determine whether male runners at risk for energy deficit have impaired bone mineral density (BMD), microarchitecture, and estimated strength.

DESIGN: Cross-sectional.

SETTING: Clinical research center.

PARTICIPANTS: 39 men (20 runners, 19 controls), ages 16-30 years.

MAIN OUTCOME MEASURES: Areal BMD (dual-energy x-ray absorptiometry); tibia and radius volumetric BMD and microarchitecture (high-resolution peripheral quantitative computed tomography); failure load (microfinite element analysis); serum testosterone, estradiol, leptin; energy availability.

RESULTS: Mean age (24.5 ± 3.8 y), lean mass, testosterone, and estradiol levels were similar; body mass index, percent fat mass, leptin, and lumbar spine BMD Z-score (-1.4 ± 0.8 vs -0.8 ± 0.8) lower (P < .05); and calcium intake and running mileage higher (P ≤ .01) in runners vs controls. Runners with EA <median had lower lumbar spine (-1.5 ± 0.7, P = .028), while runners with EA ≥median had higher hip (0.3 ± 0.7 vs -0.4 ± 0.5, P = .002), BMD Z-scores vs controls. After adjusting for calcium intake and running mileage, runners with EA <median had lower mean tibial total and trabecular volumetric BMD, trabecular bone volume fraction, cortical porosity, and apparent modulus vs controls (P < .05). Appendicular lean mass and serum estradiol (R ≥ 0.45, P ≤ .046), but not testosterone, were positively associated with tibial failure load among runners.

CONCLUSIONS: Despite weight-bearing activity, skeletal integrity is impaired in male runners with lower caloric intake relative to exercise energy expenditure, which may increase bone stress injury risk. Lower estradiol and lean mass are associated with lower tibial strength in runners.

Lv, Zhengtao, Jiaming Zhang, Shuang Liang, Chenhe Zhou, Dorothy Hu, Daniel J Brooks, Mary L Bouxsein, et al. (2023) 2023. “Comparative Study in Estrogen-Depleted Mice Identifies Skeletal and Osteocyte Transcriptomic Responses to Abaloparatide and Teriparatide.”. JCI Insight 8 (20). https://doi.org/10.1172/jci.insight.161932.

Osteocytes express parathyroid hormone (PTH)/PTH-related protein (PTHrP) receptors and respond to the PTHrP analog abaloparatide (ABL) and to the PTH 1-34 fragment teriparatide (TPTD), which are used to treat osteoporosis. Several studies indicate overlapping but distinct skeletal responses to ABL or TPTD, but their effects on cortical bone may differ. Little is known about their differential effects on osteocytes. We compared cortical osteocyte and skeletal responses to ABL and TPTD in sham-operated and ovariectomized mice. Administered 7 weeks after ovariectomy for 4 weeks at a dose of 40 μg/kg/d, TPTD and ABL had similar effects on trabecular bone, but ABL showed stronger effects in cortical bone. In cortical osteocytes, both treatments decreased lacunar area, reflecting altered peri-lacunar remodeling favoring matrix accumulation. Osteocyte RNA-Seq revealed that several genes and pathways were altered by ovariectomy and affected similarly by TPTD and ABL. Notwithstanding, several signaling pathways were uniquely regulated by ABL. Thus, in mice, TPTD and ABL induced a positive osteocyte peri-lacunar remodeling balance, but ABL induced stronger cortical responses and affected the osteocyte transcriptome differently. We concluded that ABL affected the cortical osteocyte transcriptome in a manner subtly different from TPTD, resulting in more beneficial remodeling/modeling changes and homeostasis of the cortex.

Okoro, Paul C, Eric S Orwoll, Curtis Huttenhower, Xochitl Morgan, Thomas M Kuntz, Lauren J McIver, Alyssa B Dufour, et al. (2023) 2023. “A Two-Cohort Study on the Association Between the Gut Microbiota and Bone Density, Microarchitecture, and Strength.”. Frontiers in Endocrinology 14: 1237727. https://doi.org/10.3389/fendo.2023.1237727.

The gut microbiome affects the inflammatory environment through effects on T-cells, which influence the production of immune mediators and inflammatory cytokines that stimulate osteoclastogenesis and bone loss in mice. However, there are few large human studies of the gut microbiome and skeletal health. We investigated the association between the human gut microbiome and high resolution peripheral quantitative computed tomography (HR-pQCT) scans of the radius and tibia in two large cohorts; Framingham Heart Study (FHS [n=1227, age range: 32 - 89]), and the Osteoporosis in Men Study (MrOS [n=836, age range: 78 - 98]). Stool samples from study participants underwent amplification and sequencing of the V4 hypervariable region of the 16S rRNA gene. The resulting 16S rRNA sequencing data were processed separately for each cohort, with the DADA2 pipeline incorporated in the16S bioBakery workflow. Resulting amplicon sequence variants were assigned taxonomies using the SILVA reference database. Controlling for multiple covariates, we tested for associations between microbial taxa abundances and HR-pQCT measures using general linear models as implemented in microbiome multivariable association with linear model (MaAslin2). Abundance of 37 microbial genera in FHS, and 4 genera in MrOS, were associated with various skeletal measures (false discovery rate [FDR] ≤ 0.1) including the association of DTU089 with bone measures, which was independently replicated in the two cohorts. A meta-analysis of the taxa-bone associations further revealed (FDR ≤ 0.25) that greater abundances of the genera; Akkermansia and DTU089, were associated with lower radius total vBMD, and tibia cortical vBMD respectively. Conversely, higher abundances of the genera; Lachnospiraceae NK4A136 group, and Faecalibacterium were associated with greater tibia cortical vBMD. We also investigated functional capabilities of microbial taxa by testing for associations between predicted (based on 16S rRNA amplicon sequence data) metabolic pathways abundance and bone phenotypes in each cohort. While there were no concordant functional associations observed in both cohorts, a meta-analysis revealed 8 pathways including the super-pathway of histidine, purine, and pyrimidine biosynthesis, associated with bone measures of the tibia cortical compartment. In conclusion, our findings suggest that there is a link between the gut microbiome and skeletal metabolism.

Whittier, Danielle E, Elizabeth J Samelson, Marian T Hannan, Lauren A Burt, David A Hanley, Emmanuel Biver, Pawel Szulc, et al. (2023) 2023. “A Fracture Risk Assessment Tool for High Resolution Peripheral Quantitative Computed Tomography.”. Journal of Bone and Mineral Research : The Official Journal of the American Society for Bone and Mineral Research 38 (9): 1234-44. https://doi.org/10.1002/jbmr.4808.

Most fracture risk assessment tools use clinical risk factors combined with bone mineral density (BMD) to improve assessment of osteoporosis; however, stratifying fracture risk remains challenging. This study developed a fracture risk assessment tool that uses information about volumetric bone density and three-dimensional structure, obtained using high-resolution peripheral quantitative compute tomography (HR-pQCT), to provide an alternative approach for patient-specific assessment of fracture risk. Using an international prospective cohort of older adults (n = 6802) we developed a tool to predict osteoporotic fracture risk, called μFRAC. The model was constructed using random survival forests, and input predictors included HR-pQCT parameters summarizing BMD and microarchitecture alongside clinical risk factors (sex, age, height, weight, and prior adulthood fracture) and femoral neck areal BMD (FN aBMD). The performance of μFRAC was compared to the Fracture Risk Assessment Tool (FRAX) and a reference model built using FN aBMD and clinical covariates. μFRAC was predictive of osteoporotic fracture (c-index = 0.673, p < 0.001), modestly outperforming FRAX and FN aBMD models (c-index = 0.617 and 0.636, respectively). Removal of FN aBMD and all clinical risk factors, except age, from μFRAC did not significantly impact its performance when estimating 5-year and 10-year fracture risk. The performance of μFRAC improved when only major osteoporotic fractures were considered (c-index = 0.733, p < 0.001). We developed a personalized fracture risk assessment tool based on HR-pQCT that may provide an alternative approach to current clinical methods by leveraging direct measures of bone density and structure. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).