Abstract
OBJECTIVE: Posterior fossa decompression (PFD) surgery creates more space at the skull base, reduces the resistance to the cerebrospinal fluid motion, and alters craniocervical biomechanics. In this paper, we retrospectively examined the changes in neural tissue dimensions following PFD surgery on Chiari malformation type 1 adults.
METHODS: Measurements were performed on T2-weighted brain magnetic resonance images acquired before and 4 months after surgery. Measurements were conducted for neural tissue volume and spinal cord/brainstem width at 4 different locations; 2 width measurements were made on the brainstem and 2 on the spinal cord in the midsagittal plane. Cerebellar tonsillar position (CTP) was also measured before and after surgery.
RESULTS: Twenty-five adult patients, with a mean age of 38.9 ± 8.8 years, were included in the study. The cervical cord volume increased by an average of 2.3 ± 3.3% (P = 0.002). The width at the pontomedullary junction increased by 2.2 ± 3.5% (P < 0.01), while the width 10 mm caudal to this junction increased by 4.2 ± 3.9% (P < 0.0001). The spinal cord width at the base of second cervical vertebra and third cervical vertebra did not significantly change after surgery. The CTP decreased by 60 ± 37% (P < 0.0001) after surgery, but no correlation was found between CTP change and dimension change.
CONCLUSIONS: The brainstem width and cervical cord volume showed a modest increase after PFD surgery, although standard deviations were large. A reduction in compression after PFD surgery may allow for an increase in neural tissue dimension. However, clinical relevance is unclear and should be assessed in future studies with high-resolution imaging.