A number of germ-line mutations in the BRCA1 gene confer susceptibility to breast and ovarian cancer. However, it remains difficult to determine whether many single amino-acid (missense) changes in the BRCA1 protein that are frequently detected in the clinical setting are pathologic or not. Here, we used a combination of functional, crystallographic, biophysical, molecular and evolutionary techniques, and classical genetic segregation analysis to demonstrate that the BRCA1 missense variant M1775K is pathogenic. Functional assays in yeast and mammalian cells showed that the BRCA1 BRCT domains carrying the amino-acid change M1775K displayed markedly reduced transcriptional activity, indicating that this variant represents a deleterious mutation. Importantly, the M1775K mutation disrupted the phosphopeptide-binding pocket of the BRCA1 BRCT domains, thereby inhibiting the BRCA1 interaction with the proteins BRIP1 and CtIP, which are involved in DNA damage-induced checkpoint control. These results indicate that the integrity of the BRCT phosphopeptide-binding pocket is critical for the tumor suppression function of BRCA1. Moreover, this study demonstrates that multiple lines of evidence obtained from a combination of functional, structural, molecular and evolutionary techniques, and classical genetic segregation analysis are required to confirm the pathogenicity of rare variants of disease-susceptibility genes and obtain important insights into the underlying pathogenetic mechanisms.
Publications by Year: 2008
2008
Tumstatin is an angiogenesis inhibitor that binds to alphavbeta3 integrin and suppresses tumor growth. Previous deletion mutagenesis studies identified a 25-aa fragment of tumstatin (tumstatin peptide) with in vitro antiangiogenic activity. Here, we demonstrate that systemic administration of this tumstatin peptide inhibits tumor growth and angiogenesis. Site-directed mutagenesis identified amino acids L, V, and D as essential for the antiangiogenic activity of tumstatin. The tumstatin peptide binds to alphavbeta3 integrin on proliferating endothelial cells and localizes to select tumor endothelium in vivo. Using 3D molecular modeling, we identify a putative interaction interface for tumstatin peptide on alphavbeta3 integrin. The antitumor activity of the tumstatin peptide, in combination with bevacizumab (anti-VEGF antibody), displays significant improvement in efficacy against human renal cell carcinoma xenografts when compared with the single-agent use. Collectively, our results demonstrate that tumstatin peptide binds specifically to the tumor endothelium, and its antiangiogenic action is mediated by alphavbeta3 integrin, and, in combination with an anti-VEGF antibody it exhibits enhanced tumor suppression of renal cell carcinoma.