Lipoprotein lipase (LPL) and multiple regulators of LPL activity (e.g., APOC2 and ANGPTL4) are present in all vertebrates, but GPIHBP1-the endothelial cell (EC) protein that captures LPL within the subendothelial spaces and transports it to its site of action in the capillary lumen-is present in mammals but in not chickens or other lower vertebrates. In mammals, GPIHBP1 deficiency causes severe hypertriglyceridemia, but chickens maintain low triglyceride levels despite the absence of GPIHBP1. To understand intravascular lipolysis in lower vertebrates, we examined LPL expression in mouse and chicken hearts. In both species, LPL was abundant on capillaries, but the distribution of Lpl transcripts was strikingly different. In mouse hearts, Lpl transcripts were extremely abundant in cardiomyocytes but were barely detectable in capillary ECs. In chicken hearts, Lpl transcripts were absent in cardiomyocytes but abundant in capillary ECs. In zebrafish hearts, lpl transcripts were also in capillary ECs but not cardiomyocytes. In both mouse and chicken hearts, LPL was present, as judged by immunogold electron microscopy, in the glycocalyx of capillary ECs. Thus, mammals produce LPL in cardiomyocytes and rely on GPIHBP1 to transport the LPL into capillaries, whereas lower vertebrates produce LPL directly in capillary ECs, rendering an LPL transporter unnecessary.
Publications by Year: 2024
2024
Apolipoprotein AV (APOA5) lowers plasma triglyceride (TG) levels by binding to the angiopoietin-like protein 3/8 complex (ANGPTL3/8) and suppressing its capacity to inhibit lipoprotein lipase (LPL) catalytic activity and its ability to detach LPL from binding sites within capillaries. However, the sequences in APOA5 that are required for suppressing ANGPTL3/8 activity have never been defined. A clue to the identity of those sequences was the presence of severe hypertriglyceridemia in two patients harboring an APOA5 mutation that truncates APOA5 by 35 residues ("APOA5Δ35"). We found that wild-type (WT) human APOA5, but not APOA5Δ35, suppressed ANGPTL3/8's ability to inhibit LPL catalytic activity. To pursue that finding, we prepared a mutant mouse APOA5 protein lacking 40 C-terminal amino acids ("APOA5Δ40"). Mouse WT-APOA5, but not APOA5Δ40, suppressed ANGPTL3/8's capacity to inhibit LPL catalytic activity and sharply reduced plasma TG levels in mice. WT-APOA5, but not APOA5Δ40, increased intracapillary LPL levels and reduced plasma TG levels in Apoa5-/- mice (where TG levels are high and intravascular LPL levels are low). Also, WT-APOA5, but not APOA5Δ40, blocked the ability of ANGPTL3/8 to detach LPL from cultured cells. Finally, an antibody against a synthetic peptide corresponding to the last 26 amino acids of mouse APOA5 reduced intracapillary LPL levels and increased plasma TG levels in WT mice. We conclude that C-terminal sequences in APOA5 are crucial for suppressing ANGPTL3/8 activity in vitro and for regulating intracapillary LPL levels and plasma TG levels in vivo.