Publications

2017

Semb, Gunvor, Hans Enemark, Hans Friede, Gunnar Paulin, Jan Lilja, Jorma Rautio, Mikael Andersen, Frank Åbyholm, Anette Lohmander, William Shaw, Kirsten Mølsted, Arja Heliövaara, Stig Bolund, Jyri Hukki, Hallvard Vindenes, Peter Davenport, Kjartan Arctander, Ola Larson, Anders Berggren, David Whitby, Alan Leonard, Erik Neovius, Anna Elander, Elisabeth Willadsen, Patricia Bannister, Eileen Bradbury, Gunilla Henningsson, Christina Persson, Philip Eyres, Berit Emborg, Mia Kisling-Møller, Annelise Küseler, Birthe Granhof Black, Antje Schöps, Anja Bau, Maria Boers, Helene Søgaard Andersen, Karin Jeppesen, Dorte Marxen, Marjukka Paaso, Elina Hölttä, Suvi Alaluusua, Leena Turunen, Kirsti Humerinta, Ulla Elfving-Little, Inger Beate Tørdal, Lillian Kjøll, Ragnhild Aukner, Øydis Hide, Kristin Billaud Feragen, Elisabeth Rønning, Pål Skaare, Eli Brinck, Ann-Magritt Semmingsen, Nina Lindberg, Melanie Bowden, Julie Davies, Jeanette Mooney, Haydn Bellardie, Nina Schofield, Jill Nyberg, Maria Lundberg, Agneta Linder-Aronson Karsten, Margareta Larson, Anders Holmefjord, Sigvor Reisæter, Nina-Helen Pedersen, Therese Rasmussen, Rolf Tindlund, Paul Sæle, Reidunn Blomhoff, Gry Jacobsen, Christina Havstam, Sara Rizell, Lars Enocson, Catharina Hagberg, Midia Najar Chalien, Anna Paganini, Inger Lundeborg, Agneta Marcusson, Anna-Britta Mjönes, Annica Gustavsson, Christine Hayden, Eilish McAleer, Emma Slevan, Terry Gregg, and Helen Worthington. [2017] 2017. “A Scandcleft Randomised Trials of Primary Surgery for Unilateral Cleft Lip and Palate: 1. Planning and Management..” Journal of Plastic Surgery and Hand Surgery 51(1):2-13. doi: 10.1080/2000656X.2016.1263202.

BACKGROUND AND AIMS: Longstanding uncertainty surrounds the selection of surgical protocols for the closure of unilateral cleft lip and palate, and randomised trials have only rarely been performed. This paper is an introduction to three randomised trials of primary surgery for children born with complete unilateral cleft lip and palate (UCLP). It presents the protocol developed for the trials in CONSORT format, and describes the management structure that was developed to achieve the long-term engagement and commitment required to complete the project.

METHOD: Ten established national or regional cleft centres participated. Lip and soft palate closure at 3-4 months, and hard palate closure at 12 months served as a common method in each trial. Trial 1 compared this with hard palate closure at 36 months. Trial 2 compared it with lip closure at 3-4 months and hard and soft palate closure at 12 months. Trial 3 compared it with lip and hard palate closure at 3-4 months and soft palate closure at 12 months. The primary outcomes were speech and dentofacial development, with a series of perioperative and longer-term secondary outcomes.

RESULTS: Recruitment of 448 infants took place over a 9-year period, with 99.8% subsequent retention at 5 years.

CONCLUSION: The series of reports that follow this introductory paper include comparisons at age 5 of surgical outcomes, speech outcomes, measures of dentofacial development and appearance, and parental satisfaction. The outcomes recorded and the numbers analysed for each outcome and time point are described in the series.

TRIAL REGISTRATION: ISRCTN29932826.

Cooper-Knock, Johnathan, Claire Green, Gabriel Altschuler, Wenbin Wei, Joanna J Bury, Paul R Heath, Matthew Wyles, Catherine Gelsthorpe, Robin Highley, Alejandro Lorente-Pons, Tim Beck, Kathryn Doyle, Karel Otero, Bryan Traynor, Janine Kirby, Pamela J Shaw, and Winston Hide. [2017] 2017. “A Data-Driven Approach Links Microglia to Pathology and Prognosis in Amyotrophic Lateral Sclerosis..” Acta Neuropathologica Communications 5(1):23. doi: 10.1186/s40478-017-0424-x.

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that lacks a predictive and broadly applicable biomarker. Continued focus on mutation-specific upstream mechanisms has yet to predict disease progression in the clinic. Utilising cellular pathology common to the majority of ALS patients, we implemented an objective transcriptome-driven approach to develop noninvasive prognostic biomarkers for disease progression. Genes expressed in laser captured motor neurons in direct correlation (Spearman rank correlation, p < 0.01) with counts of neuropathology were developed into co-expression network modules. Screening modules using three gene sets representing rate of disease progression and upstream genetic association with ALS led to the prioritisation of a single module enriched for immune response to motor neuron degeneration. Genes in the network module are important for microglial activation and predict disease progression in genetically heterogeneous ALS cohorts: Expression of three genes in peripheral lymphocytes - LILRA2, ITGB2 and CEBPD - differentiate patients with rapid and slowly progressive disease, suggesting promise as a blood-derived biomarker. TREM2 is a member of the network module and the level of soluble TREM2 protein in cerebrospinal fluid is shown to predict survival when measured in late stage disease (Spearman rank correlation, p = 0.01). Our data-driven systems approach has, for the first time, directly linked microglia to the development of motor neuron pathology. LILRA2, ITGB2 and CEBPD represent peripherally accessible candidate biomarkers and TREM2 provides a broadly applicable therapeutic target for ALS.

Daily, Kenneth, Shannan J Ho Sui, Lynn M Schriml, Phillip J Dexheimer, Nathan Salomonis, Robin Schroll, Stacy Bush, Mehdi Keddache, Christopher Mayhew, Samad Lotia, Thanneer M Perumal, Kristen Dang, Lorena Pantano, Alexander R Pico, Elke Grassman, Diana Nordling, Winston Hide, Antonis K Hatzopoulos, Punam Malik, Jose A Cancelas, Carolyn Lutzko, Bruce J Aronow, and Larsson Omberg. [2017] 2017. “Molecular, Phenotypic, and Sample-Associated Data to Describe Pluripotent Stem Cell Lines and Derivatives..” Scientific Data 4:170030. doi: 10.1038/sdata.2017.30.

The use of induced pluripotent stem cells (iPSC) derived from independent patients and sources holds considerable promise to improve the understanding of development and disease. However, optimized use of iPSC depends on our ability to develop methods to efficiently qualify cell lines and protocols, monitor genetic stability, and evaluate self-renewal and differentiation potential. To accomplish these goals, 57 stem cell lines from 10 laboratories were differentiated to 7 different states, resulting in 248 analyzed samples. Cell lines were differentiated and characterized at a central laboratory using standardized cell culture methodologies, protocols, and metadata descriptors. Stem cell and derived differentiated lines were characterized using RNA-seq, miRNA-seq, copy number arrays, DNA methylation arrays, flow cytometry, and molecular histology. All materials, including raw data, metadata, analysis and processing code, and methodological and provenance documentation are publicly available for re-use and interactive exploration at https://www.synapse.org/pcbc. The goal is to provide data that can improve our ability to robustly and reproducibly use human pluripotent stem cells to understand development and disease.

Li, Airong, Basavaraj Hooli, Kristina Mullin, Rebecca E Tate, Adele Bubnys, Rory Kirchner, Brad Chapman, Oliver Hofmann, Winston Hide, and Rudolph E Tanzi. [2017] 2017. “Silencing of the Drosophila Ortholog of SOX5 Leads to Abnormal Neuronal Development and Behavioral Impairment..” Human Molecular Genetics 26(8):1472-82. doi: 10.1093/hmg/ddx051.

SOX5 encodes a transcription factor that is expressed in multiple tissues including heart, lung and brain. Mutations in SOX5 have been previously found in patients with amyotrophic lateral sclerosis (ALS) and developmental delay, intellectual disability and dysmorphic features. To characterize the neuronal role of SOX5, we silenced the Drosophila ortholog of SOX5, Sox102F, by RNAi in various neuronal subtypes in Drosophila. Silencing of Sox102F led to misorientated and disorganized michrochaetes, neurons with shorter dendritic arborization (DA) and reduced complexity, diminished larval peristaltic contractions, loss of neuromuscular junction bouton structures, impaired olfactory perception, and severe neurodegeneration in brain. Silencing of SOX5 in human SH-SY5Y neuroblastoma cells resulted in a significant repression of WNT signaling activity and altered expression of WNT-related genes. Genetic association and meta-analyses of the results in several large family-based and case-control late-onset familial Alzheimer's disease (LOAD) samples of SOX5 variants revealed several variants that show significant association with AD disease status. In addition, analysis for rare and highly penetrate functional variants revealed four novel variants/mutations in SOX5, which taken together with functional prediction analysis, suggests a strong role of SOX5 causing AD in the carrier families. Collectively, these findings indicate that SOX5 is a novel candidate gene for LOAD with an important role in neuronal function. The genetic findings warrant further studies to identify and characterize SOX5 variants that confer risk for AD, ALS and intellectual disability.

Zhang, Peter, Emmanuel Dimont, Thomas Ha, Douglas J Swanson, FANTOM Consortium, Winston Hide, and Dan Goldowitz. [2017] 2017. “Relatively Frequent Switching of Transcription Start Sites During Cerebellar Development..” BMC Genomics 18(1):461. doi: 10.1186/s12864-017-3834-z.

BACKGROUND: Alternative transcription start site (TSS) usage plays important roles in transcriptional control of mammalian gene expression. The growing interest in alternative TSSs and their role in genome diversification spawned many single-gene studies on differential usages of tissue-specific or temporal-specific alternative TSSs. However, exploration of the switching usage of alternative TSS usage on a genomic level, especially in the central nervous system, is largely lacking.

RESULTS: In this study, We have prepared a unique set of time-course data for the developing cerebellum, as part of the FANTOM5 consortium ( http://fantom.gsc.riken.jp/5/ ) that uses their innovative capturing of 5' ends of all transcripts followed by Helicos next generation sequencing. We analyzed the usage of all transcription start sites (TSSs) at each time point during cerebellar development that provided information on multiple RNA isoforms that emerged from the same gene. We developed a mathematical method that systematically compares the expression of different TSSs of a gene to identify temporal crossover and non-crossover switching events. We identified 48,489 novel TSS switching events in 5433 genes during cerebellar development. This includes 9767 crossover TSS switching events in 1511 genes, where the dominant TSS shifts over time.

CONCLUSIONS: We observed a relatively high prevalence of TSS switching in cerebellar development where the resulting temporally-specific gene transcripts and protein products can play important regulatory and functional roles.

2016

Gedye, Craig, Tracy Cardwell, Nektaria Dimopoulos, Bee Shin Tan, Heather Jackson, Suzanne Svobodová, Matthew Anaka, Andreas Behren, Christopher Maher, Oliver Hofmann, Winston Hide, Otavia Caballero, Ian D Davis, and Jonathan Cebon. [2016] 2016. “Mycoplasma Infection Alters Cancer Stem Cell Properties in Vitro..” Stem Cell Reviews and Reports 12(1):156-61. doi: 10.1007/s12015-015-9630-8.

Cancer cell lines can be useful to model cancer stem cells. Infection with Mycoplasma species is an insidious problem in mammalian cell culture. While investigating stem-like properties in early passage melanoma cell lines, we noted poorly reproducible results from an aliquot of a cell line that was later found to be infected with Mycoplasma hyorhinis. Deliberate infection of other early passage melanoma cell lines aliquots induced variable and unpredictable effects on expression of putative cancer stem cell markers, clonogenicity, proliferation and global gene expression. Cell lines established in stem cell media (SCM) were equally susceptible. Mycoplasma status is rarely reported in publications using cultured cells to study the cancer stem cell hypothesis. Our work highlights the importance of surveillance for Mycoplasma infection while using any cultured cells to interrogate tumor heterogeneity.

Mulder, Nicola J, Ezekiel Adebiyi, Raouf Alami, Alia Benkahla, James Brandful, Seydou Doumbia, Dean Everett, Faisal M Fadlelmola, Fatima Gaboun, Simani Gaseitsiwe, Hassan Ghazal, Scott Hazelhurst, Winston Hide, Azeddine Ibrahimi, Yasmina Jaufeerally Fakim, Victor Jongeneel, Fourie Joubert, Samar Kassim, Jonathan Kayondo, Judit Kumuthini, Sylvester Lyantagaye, Julie Makani, Ahmed Mansour Alzohairy, Daniel Masiga, Ahmed Moussa, Oyekanmi Nash, Odile Ouwe Missi Oukem-Boyer, Ellis Owusu-Dabo, Sumir Panji, Hugh Patterton, Fouzia Radouani, Khalid Sadki, Fouad Seghrouchni, Özlem Tastan Bishop, Nicki Tiffin, Nzovu Ulenga, and H3ABioNet Consortium. [2016] 2016. “H3ABioNet, a Sustainable Pan-African Bioinformatics Network for Human Heredity and Health in Africa..” Genome Research 26(2):271-7. doi: 10.1101/gr.196295.115.

The application of genomics technologies to medicine and biomedical research is increasing in popularity, made possible by new high-throughput genotyping and sequencing technologies and improved data analysis capabilities. Some of the greatest genetic diversity among humans, animals, plants, and microbiota occurs in Africa, yet genomic research outputs from the continent are limited. The Human Heredity and Health in Africa (H3Africa) initiative was established to drive the development of genomic research for human health in Africa, and through recognition of the critical role of bioinformatics in this process, spurred the establishment of H3ABioNet, a pan-African bioinformatics network for H3Africa. The limitations in bioinformatics capacity on the continent have been a major contributory factor to the lack of notable outputs in high-throughput biology research. Although pockets of high-quality bioinformatics teams have existed previously, the majority of research institutions lack experienced faculty who can train and supervise bioinformatics students. H3ABioNet aims to address this dire need, specifically in the area of human genetics and genomics, but knock-on effects are ensuring this extends to other areas of bioinformatics. Here, we describe the emergence of genomics research and the development of bioinformatics in Africa through H3ABioNet.

Roccaro, Aldo M, Antonio Sacco, Jiantao Shi, Marco Chiarini, Adriana Perilla-Glen, Salomon Manier, Siobhan Glavey, Yosra Aljawai, Yuji Mishima, Yawara Kawano, Michele Moschetta, Mick Correll, Ma Reina Improgo, Jennifer R Brown, Luisa Imberti, Giuseppe Rossi, Jorge J Castillo, Steven P Treon, Matthew L Freedman, Eliezer M Van Allen, Winston Hide, Elaine Hiller, Irene Rainville, and Irene M Ghobrial. [2016] 2016. “Exome Sequencing Reveals Recurrent Germ Line Variants in Patients With Familial Waldenström Macroglobulinemia..” Blood 127(21):2598-606. doi: 10.1182/blood-2015-11-680199.

Familial aggregation of Waldenström macroglobulinemia (WM) cases, and the clustering of B-cell lymphoproliferative disorders among first-degree relatives of WM patients, has been reported. Nevertheless, the possible contribution of inherited susceptibility to familial WM remains unrevealed. We performed whole exome sequencing on germ line DNA obtained from 4 family members in which coinheritance for WM was documented in 3 of them, and screened additional independent 246 cases by using gene-specific mutation sequencing. Among the shared germ line variants, LAPTM5(c403t) and HCLS1(g496a) were the most recurrent, being present in 3/3 affected members of the index family, detected in 8% of the unrelated familial cases, and present in 0.5% of the nonfamilial cases and in <0.05 of a control population. LAPTM5 and HCLS1 appeared as relevant WM candidate genes that characterized familial WM individuals and were also functionally relevant to the tumor clone. These findings highlight potentially novel contributors for the genetic predisposition to familial WM and indicate that LAPTM5(c403t) and HCLS1(g496a) may represent predisposition alleles in patients with familial WM.

Salomonis, Nathan, Phillip J Dexheimer, Larsson Omberg, Robin Schroll, Stacy Bush, Jeffrey Huo, Lynn Schriml, Shannan Ho Sui, Mehdi Keddache, Christopher Mayhew, Shiva Kumar Shanmukhappa, James Wells, Kenneth Daily, Shane Hubler, Yuliang Wang, Elias Zambidis, Adam Margolin, Winston Hide, Antonis K Hatzopoulos, Punam Malik, Jose A Cancelas, Bruce J Aronow, and Carolyn Lutzko. [2016] 2016. “Integrated Genomic Analysis of Diverse Induced Pluripotent Stem Cells from the Progenitor Cell Biology Consortium..” Stem Cell Reports 7(1):110-25. doi: 10.1016/j.stemcr.2016.05.006.

The rigorous characterization of distinct induced pluripotent stem cells (iPSC) derived from multiple reprogramming technologies, somatic sources, and donors is required to understand potential sources of variability and downstream potential. To achieve this goal, the Progenitor Cell Biology Consortium performed comprehensive experimental and genomic analyses of 58 iPSC from ten laboratories generated using a variety of reprogramming genes, vectors, and cells. Associated global molecular characterization studies identified functionally informative correlations in gene expression, DNA methylation, and/or copy-number variation among key developmental and oncogenic regulators as a result of donor, sex, line stability, reprogramming technology, and cell of origin. Furthermore, X-chromosome inactivation in PSC produced highly correlated differences in teratoma-lineage staining and regulator expression upon differentiation. All experimental results, and raw, processed, and metadata from these analyses, including powerful tools, are interactively accessible from a new online portal at https://www.synapse.org to serve as a reusable resource for the stem cell community.

Grasso, Carole, Matthew Anaka, Oliver Hofmann, Ramakrishna Sompallae, Kate Broadley, Winston Hide, Michael Berridge V, Jonathan Cebon, Andreas Behren, and Melanie J McConnell. [2016] 2016. “Iterative Sorting Reveals CD133+ and CD133- Melanoma Cells As Phenotypically Distinct Populations..” BMC Cancer 16(1):726. doi: 10.1186/s12885-016-2759-2.

BACKGROUND: The heterogeneity and tumourigenicity of metastatic melanoma is attributed to a cancer stem cell model, with CD133 considered to be a cancer stem cell marker in melanoma as well as other tumours, but its role has remained controversial.

METHODS: We iteratively sorted CD133+ and CD133- cells from 3 metastatic melanoma cell lines, and observed tumourigenicity and phenotypic characteristics over 7 generations of serial xeno-transplantation in NOD/SCID mice.

RESULTS: We demonstrate that iterative sorting is required to make highly pure populations of CD133+ and CD133- cells from metastatic melanoma, and that these two populations have distinct characteristics not related to the cancer stem cell phenotype. In vitro, gene set enrichment analysis indicated CD133+ cells were related to a proliferative phenotype, whereas CD133- cells were of an invasive phenotype. However, in vivo, serial transplantation of CD133+ and CD133- tumours over 7 generations showed that both populations were equally able to initiate and propagate tumours. Despite this, both populations remained phenotypically distinct, with CD133- cells only able to express CD133 in vivo and not in vitro. Loss of CD133 from the surface of a CD133+ cell was observed in vitro and in vivo, however CD133- cells derived from CD133+ retained the CD133+ phenotype, even in the presence of signals from the tumour microenvironment.

CONCLUSION: We show for the first time the necessity of iterative sorting to isolate pure marker-positive and marker-negative populations for comparative studies, and present evidence that despite CD133+ and CD133- cells being equally tumourigenic, they display distinct phenotypic differences, suggesting CD133 may define a distinct lineage in melanoma.