Using the two largest collections of Mus musculus and Homo sapiens transcription start sites (TSSs) determined based on CAGE tags, ditags, full-length cDNAs, and other transcript data, we describe the compositional landscape surrounding TSSs with the aim of gaining better insight into the properties of mammalian promoters. We classified TSSs into four types based on compositional properties of regions immediately surrounding them. These properties highlighted distinctive features in the extended core promoters that helped us delineate boundaries of the transcription initiation domain space for both species. The TSS types were analyzed for associations with initiating dinucleotides, CpG islands, TATA boxes, and an extensive collection of statistically significant cis-elements in mouse and human. We found that different TSS types show preferences for different sets of initiating dinucleotides and cis-elements. Through Gene Ontology and eVOC categories and tissue expression libraries we linked TSS characteristics to expression. Moreover, we show a link of TSS characteristics to very specific genomic organization in an example of immune-response-related genes (GO:0006955). Our results shed light on the global properties of the two transcriptomes not revealed before and therefore provide the framework for better understanding of the transcriptional mechanisms in the two species, as well as a framework for development of new and more efficient promoter- and gene-finding tools.
Publications
2006
Genome-wide experimental methods to identify disease genes, such as linkage analysis and association studies, generate increasingly large candidate gene sets for which comprehensive empirical analysis is impractical. Computational methods employ data from a variety of sources to identify the most likely candidate disease genes from these gene sets. Here, we review seven independent computational disease gene prioritization methods, and then apply them in concert to the analysis of 9556 positional candidate genes for type 2 diabetes (T2D) and the related trait obesity. We generate and analyse a list of nine primary candidate genes for T2D genes and five for obesity. Two genes, LPL and BCKDHA, are common to these two sets. We also present a set of secondary candidates for T2D (94 genes) and for obesity (116 genes) with 58 genes in common to both diseases.
2005
Given the medical and agricultural significance of Glossina, knowledge of the genomic aspects of the vector and vector-pathogen interactions are a high priority. In preparation for a full genome sequence initiative, an extensive set of expressed sequence tags (ESTs) has been generated from tissue-specific normalized libraries. In addition, bacterial artificial chromosome (BAC) libraries are being constructed, and information on the genome structure and size from different species has been obtained. An international consortium is now in place to further efforts to lead to a full genome project.
The Human Anatomic Gene Expression Library (H-ANGEL) is a resource for information concerning the anatomical distribution and expression of human gene transcripts. The tool contains protein expression data from multiple platforms that has been associated with both manually annotated full-length cDNAs from H-InvDB and RefSeq sequences. Of the H-Inv predicted genes, 18 897 have associated expression data generated by at least one platform. H-ANGEL utilizes categorized mRNA expression data from both publicly available and proprietary sources. It incorporates data generated by three types of methods from seven different platforms. The data are provided to the user in the form of a web-based viewer with numerous query options. H-ANGEL is updated with each new release of cDNA and genome sequence build. In future editions, we will incorporate the capability for expression data updates from existing and new platforms. H-ANGEL is accessible at http://www.jbirc.aist.go.jp/hinv/h-angel/.
BACKGROUND: The continuous flow of EST data remains one of the richest sources for discoveries in modern biology. The first step in EST data mining is usually associated with EST clustering, the process of grouping of original fragments according to their annotation, similarity to known genomic DNA or each other. Clustered EST data, accumulated in databases such as UniGene, STACK and TIGR Gene Indices have proven to be crucial in research areas from gene discovery to regulation of gene expression.
RESULTS: We have developed a new nucleotide sequence matching algorithm and its implementation for clustering EST sequences. The program is based on the original CLU match detection algorithm, which has improved performance over the widely used d2_cluster. The CLU algorithm automatically ignores low-complexity regions like poly-tracts and short tandem repeats.
CONCLUSION: CLU represents a new generation of EST clustering algorithm with improved performance over current approaches. An early implementation can be applied in small and medium-size projects. The CLU program is available on an open source basis free of charge. It can be downloaded from http://compbio.pbrc.edu/pti.
Genome-wide techniques such as microarray analysis, Serial Analysis of Gene Expression (SAGE), Massively Parallel Signature Sequencing (MPSS), linkage analysis and association studies are used extensively in the search for genes that cause diseases, and often identify many hundreds of candidate disease genes. Selection of the most probable of these candidate disease genes for further empirical analysis is a significant challenge. Additionally, identifying the genes that cause complex diseases is problematic due to low penetrance of multiple contributing genes. Here, we describe a novel bioinformatic approach that selects candidate disease genes according to their expression profiles. We use the eVOC anatomical ontology to integrate text-mining of biomedical literature and data-mining of available human gene expression data. To demonstrate that our method is successful and widely applicable, we apply it to a database of 417 candidate genes containing 17 known disease genes. We successfully select the known disease gene for 15 out of 17 diseases and reduce the candidate gene set to 63.3% (+/-18.8%) of its original size. This approach facilitates direct association between genomic data describing gene expression and information from biomedical texts describing disease phenotype, and successfully prioritizes candidate genes according to their expression in disease-affected tissues.
2004
BACKGROUND: Rates of substitution in protein-coding sequences can provide important insights into evolutionary processes that are of biomedical and theoretical interest. Increased availability of coding sequence data has enabled researchers to estimate more accurately the coding sequence divergence of pairs of organisms. However the use of different data sources, alignment protocols and methods to estimate substitution rates leads to widely varying estimates of key parameters that define the coding sequence divergence of orthologous genes. Although complete genome sequence data are not available for all organisms, fragmentary sequence data can provide accurate estimates of substitution rates provided that an appropriate and consistent methodology is used and that differences in the estimates obtainable from different data sources are taken into account.
RESULTS: We have developed FRAGS, an application framework that uses existing, freely available software components to construct in-frame alignments and estimate coding substitution rates from fragmentary sequence data. Coding sequence substitution estimates for human and chimpanzee sequences, generated by FRAGS, reveal that methodological differences can give rise to significantly different estimates of important substitution parameters. The estimated substitution rates were also used to infer upper-bounds on the amount of sequencing error in the datasets that we have analysed.
CONCLUSION: We have developed a system that performs robust estimation of substitution rates for orthologous sequences from a pair of organisms. Our system can be used when fragmentary genomic or transcript data is available from one of the organisms and the other is a completely sequenced genome within the Ensembl database. As well as estimating substitution statistics our system enables the user to manage and query alignment and substitution data.
Parasites successfully exist within the host as a result of highly specific genetic adaptations. Therefore, detecting genes that contain relevant adaptive mutations can provide a guide to biological processes that are potentially essential to the parasite. Random genetic mutations that confer selective advantage can act to alter amino acids so as to confer gain of function that has positive impact on the survival of the parasite. Directional selection of advantageous mutations results from an elevated rate of nonsynonymous substitutions in rapidly evolving genes. Genes on which this positive selection operates are considered to have an evolutionary characteristic such that the normalized number of nonsynonymous (dn) substitutions is greater than that of synonymous (ds) substitutions. By searching in a statistically robust way for genes that contain this characteristic, it is possible to apply a stringent method to identify genes that may be under positive selection and thus to identify biological processes involving those genes that are essential to the survival of the parasite. Genes detected typically class into those under host immune surveillance and those intrinsic to pathways essential to survival of the parasite within the host. Depending on their function and location of protein expression, such genes have the potential to provide exceptional vaccine and drug candidates.
The human genome sequence defines our inherent biological potential; the realization of the biology encoded therein requires knowledge of the function of each gene. Currently, our knowledge in this area is still limited. Several lines of investigation have been used to elucidate the structure and function of the genes in the human genome. Even so, gene prediction remains a difficult task, as the varieties of transcripts of a gene may vary to a great extent. We thus performed an exhaustive integrative characterization of 41,118 full-length cDNAs that capture the gene transcripts as complete functional cassettes, providing an unequivocal report of structural and functional diversity at the gene level. Our international collaboration has validated 21,037 human gene candidates by analysis of high-quality full-length cDNA clones through curation using unified criteria. This led to the identification of 5,155 new gene candidates. It also manifested the most reliable way to control the quality of the cDNA clones. We have developed a human gene database, called the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/). It provides the following: integrative annotation of human genes, description of gene structures, details of novel alternative splicing isoforms, non-protein-coding RNAs, functional domains, subcellular localizations, metabolic pathways, predictions of protein three-dimensional structure, mapping of known single nucleotide polymorphisms (SNPs), identification of polymorphic microsatellite repeats within human genes, and comparative results with mouse full-length cDNAs. The H-InvDB analysis has shown that up to 4% of the human genome sequence (National Center for Biotechnology Information build 34 assembly) may contain misassembled or missing regions. We found that 6.5% of the human gene candidates (1,377 loci) did not have a good protein-coding open reading frame, of which 296 loci are strong candidates for non-protein-coding RNA genes. In addition, among 72,027 uniquely mapped SNPs and insertions/deletions localized within human genes, 13,215 nonsynonymous SNPs, 315 nonsense SNPs, and 452 indels occurred in coding regions. Together with 25 polymorphic microsatellite repeats present in coding regions, they may alter protein structure, causing phenotypic effects or resulting in disease. The H-InvDB platform represents a substantial contribution to resources needed for the exploration of human biology and pathology.
2003
Understanding and harnessing cellular potency are fundamental in biology and are also critical to the future therapeutic use of stem cells. Transcriptome analysis of these pluripotent cells is a first step towards such goals. Starting with sources that include oocytes, blastocysts, and embryonic and adult stem cells, we obtained 249,200 high-quality EST sequences and clustered them with public sequences to produce an index of approximately 30,000 total mouse genes that includes 977 previously unidentified genes. Analysis of gene expression levels by EST frequency identifies genes that characterize preimplantation embryos, embryonic stem cells, and adult stem cells, thus providing potential markers as well as clues to the functional features of these cells. Principal component analysis identified a set of 88 genes whose average expression levels decrease from oocytes to blastocysts, stem cells, postimplantation embryos, and finally to newborn tissues. This can be a first step towards a possible definition of a molecular scale of cellular potency. The sequences and cDNA clones recovered in this work provide a comprehensive resource for genes functioning in early mouse embryos and stem cells. The nonrestricted community access to the resource can accelerate a wide range of research, particularly in reproductive and regenerative medicine.