Select Publications

2022

de Oliveira, M. G.; Monica, F. Z.; Passos, G. R.; Victorio, J. A.; Davel, A. P.; Oliveira, A. L. L.; Parada, C. A.; D’Ancona, C. A. L.; Hill, W. G.; Antunes, E. Selective Pharmacological Inhibition of NOX2 by GSK2795039 Improves Bladder Dysfunction in Cyclophosphamide-Induced Cystitis in Mice.. Antioxidants (Basel, Switzerland) 2022, 12.

Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic inflammatory disease without consistently effective treatment. Among the many mediators implicated in cystitis, the overproduction of reactive oxygen species (ROS) seems to play a key role, although the main source of ROS remains unclear. This study aimed to investigate the contribution of NADPH oxidase (NOX) isoforms in ROS generation and the voiding dysfunction of cyclophosphamide (CYP, 300 mg/Kg, ip, 24 h)-induced cystitis in adult female mice, a well-recognized animal model to study IC/BPS, by using GKT137831 (5 mg/Kg, ip, three times in a 24 h period) or GSK2795039 (5 mg/Kg, ip, three times in a 24 h period) to inhibit NOX1/4 or NOX2, respectively. Our results showed that treatment with GSK2795039 improved the dysfunctional voiding behavior induced by CYP, reduced bladder edema and inflammation, and preserved the urothelial barrier integrity and tight junction occludin expression, besides inhibiting the characteristic vesical pain and bladder superoxide anion generation. In contrast, the NOX1/4 inhibitor GKT137831 had no significant protective effects. Taken together, our in vivo and ex vivo data demonstrate that NOX2 is possibly the main source of ROS observed in cystitis-induced CYP in mice. Therefore, selective inhibition of NOX2 by GSK2795039 may be a promising target for future therapies for IC/BPS.

Diabetic bladder dysfunction (DBD) is the most common complication in diabetes. Myogenic abnormalities are common in DBD; however, the underlying mechanisms leading to these remain unclear. To understand the importance of smooth muscle insulin receptor (IR)-mediated signaling in the pathogenesis of DBD, we conditionally deleted it to achieve either heterozygous (SMIR+/-) or homozygous (SMIR-/-) deletion in smooth muscle cells. Despite impaired glucose and insulin tolerance seen with SMIR-/- mice, both SMIR+/- and SMIR-/- mice exhibited normal blood glucose and plasma insulin levels. Interestingly, these mice had abnormal voiding phenotypes, that included urinary frequency and small voids, and bladder smooth muscle (BSM) had significantly diminished contraction force. Morphology revealed a dilated bladder with thinner BSM layer, and BSM bundles were disorganized with penetrating interstitial tissue. Deletion of IR elevated FoxO and decreased mTOR protein expression, which further decreased the expression of Chrm3, P2x1, Sm22, and Cav1.2, crucial functional proteins for BSM contraction. Furthermore, we determined the expression of adiponectin in BSM, and deletion of IR in BSM inhibited adiponectin-mediated signaling. In summary, disruption of IR-mediated signaling in BSM caused abnormalities in proliferation and differentiation, leading to diminished BSM contractility and a voiding dysfunction phenotype that recapitulates human DBD.

2021

Zhu, K.; Hill, W. G.; Li, F.; Shi, B.; Chai, T. C. Urine and Tissue Bacterial Loads Correlate With Voiding Behaviors in a Murine Urinary Tract Infection Model.. Urology 2021, 154, 344.e1-344.e7.

OBJECTIVES: To describe associations between voiding behavior and bacterial loads in a murine model of urinary tract infection (UTI).

METHODS: Fourteen female C57BL/6J mice were transurethrally inoculated with 108colony-forming unit uropathogenic E. coli (UPEC) UTI89 in 50 μL two times, 24 hours apart. Voiding spot assays were used to measure voiding behavior. Voiding spot assays and urine cultures were performed at various time points between 1 and 28 days postinfection (dpi). Bladder and kidney bacterial loads were measured at 28 dpi. Correlations were calculated between voiding spot assay variables and bacterial loads at different dpi. In a separate experiment, 3 female mice were infected with UPEC in the same manner for histology changes at 28-dpi in chronic UTI.

RESULTS: During the 28 days, among 14 mice, 8 developed chronic cystitis and 11 developed chronic pyelonephritis based on a priori definitions. All infected mice showed increased urinary frequency, polyuria, and decreased bladder capacity. Tissue fibrosis was also observed in the infected bladder. At 1 dpi and 28 dpi, the urinary bacterial loads were positively associated with frequency and polyuria. Bladder and kidney bacterial loads at 28 dpi were positively with frequency and polyuria.

CONCLUSIONS: Urine and tissue bacterial loads were associated with changes of voiding behavior at both 1 and 28 dpi.

Xie, X.; Chen, H.; Zhang, L.; Chan, D.; Hill, W. G.; Zeidel, M. L.; Yu, W. Molecular mechanisms of voiding dysfunction in a novel mouse model of acute urinary retention.. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 2021, 35, e21447.

Acute urinary retention (AUR) is a common urological emergency and affects a significant patient population. The inability to eliminate urine may lead to permanent damage to the bladder's structure and functioning. However, we know little about the underlying molecular sequelae to the urine retention. To closely mirror the potential high pressures that patients with AUR could experience, we catheterized anesthetized female mice via the urethra and filled the bladder by pumping saline (25 µL/min) into the bladder lumen to 50 cm or 80 cm water pressure. A water column with designated height (50 or 80 cm) was then adjusted to maintain constant pressure in the bladder lumen for 30 minutes. Functional and morphological evaluations were performed from 0 to 24 hours after AUR treatment. Mice exhibited incontinence and overactivity with diminished voiding pressure. Significant injury was confirmed which revealed bladders with disrupted urothelial barrier, edematous lamina propria, and distorted muscle bundles. Bladder smooth muscle (BSM) from pressure-treated mice have significantly diminished contraction force, suggesting that bladder voiding dysfunction can be attributed to impaired BSM contractility. Indeed, dysregulation of acetylcholine and purinergic signaling pathways were demonstrated, indicating that reduced efficacy of these pathways contributes to impaired BSM contractility. Finally, altered expression of β1-integrin and extracellular matrix mediated mechanotransduction pathways were detected, suggesting a profound remodeling process. These data demonstrated an easy to perform, quantifiable, and reproducible AUR mouse model, which mimics well the characteristics of human AUR patients, and our data generate new insights into the molecular mechanisms that occur following AUR.

Qiu, C.; Albayram, O.; Kondo, A.; Wang, B.; Kim, N.; Arai, K.; Tsai, C.-Y.; Bassal, M. A.; Herbert, M. K.; Washida, K.; et al. Cis P-tau underlies vascular contribution to cognitive impairment and dementia and can be effectively targeted by immunotherapy in mice.. Science translational medicine 2021, 13.

Compelling evidence supports vascular contributions to cognitive impairment and dementia (VCID) including Alzheimer's disease (AD), but the underlying pathogenic mechanisms and treatments are not fully understood. Cis P-tau is an early driver of neurodegeneration resulting from traumatic brain injury, but its role in VCID remains unclear. Here, we found robust cis P-tau despite no tau tangles in patients with VCID and in mice modeling key aspects of clinical VCID, likely because of the inhibition of its isomerase Pin1 by DAPK1. Elimination of cis P-tau in VCID mice using cis-targeted immunotherapy, brain-specific Pin1 overexpression, or DAPK1 knockout effectively rescues VCID-like neurodegeneration and cognitive impairment in executive function. Cis mAb also prevents and ameliorates progression of AD-like neurodegeneration and memory loss in mice. Furthermore, single-cell RNA sequencing revealed that young VCID mice display diverse cortical cell type-specific transcriptomic changes resembling old patients with AD, and the vast majority of these global changes were recovered by cis-targeted immunotherapy. Moreover, purified soluble cis P-tau was sufficient to induce progressive neurodegeneration and brain dysfunction by causing axonopathy and conserved transcriptomic signature found in VCID mice and patients with AD with early pathology. Thus, cis P-tau might play a major role in mediating VCID and AD, and antibody targeting it may be useful for early diagnosis, prevention, and treatment of cognitive impairment and dementia after neurovascular insults and in AD.

Ricotta, D. N.; Hale, A. J.; Freed, J. A.; Scribner, T. E.; Zeidel, M. L.; Herzig, S. J. Generalists as Clinical Physiologists: Bringing Science Back to the Bedside.. Journal of general internal medicine 2021, 36, 3847-3851.

BACKGROUND: Few generalists engage in basic science research or feel comfortable teaching physiology at the bedside. This may reflect a lack of understanding or confidence teaching physiologic principles.

AIM: To inspire general internists to relearn and teach physiology in clinical practice.

SETTING: An active biomedical research laboratory.

PARTICIPANTS: We educated 67 faculty participants (4 primary care, 59 hospitalists, and 4 other specialties) from 24 medical centers, representing 17 states.

PROGRAM DESCRIPTION: The 5-day course was structured around re-learning basic physiology principles and developing teaching skills. Participants engaged in hands-on experiments through 4 modules using aquatic species, each paired with a physiology content primer. Participants also developed teaching scripts based on their experiments.

PROGRAM EVALUATION: Post-course surveys revealed that 97% felt confident teaching physiology at the bedside, 100% felt the course enhanced their understanding of the mechanisms of disease, and there was a significant improvement in self-reported teaching ability.

DISCUSSION: An immersive, hands-on faculty development course that integrated physiology with clinical decision-making increased participants' comfort level and self-rated ability to teach and incorporate physiology in their clinical work. We believe faculty development is one potential solution to the growing chasm between clinicians and scientists in general medicine.

2020

Kim, A. K.; Hamadani, C.; Zeidel, M. L.; Hill, W. G. Urological complications of obesity and diabetes in males and females of three mouse models: temporal manifestations.. American journal of physiology. Renal physiology 2020, 318, F160-F174.

Diabetic bladder dysfunction is a frequent complication of diabetes. Although many mouse models of diabetes now exist, there has been little systematic effort to characterize them for the timing of onset and severity of bladder dysfunction. We monitored metabolic status and tested bladder function by void spot assay and limited anesthetized cystometry in both male and female mice of three models of obesity and diabetes: a type 1 diabetes model (the Akita mouse) and two type 2 diabetes models [the diet-induced obese (DIO) model and the ob/ob mouse]. Akita mice had insulin pellets implanted subcutaneously every 3 mo to mimic poorly controlled type 1 diabetes in humans. Mice were hyperglycemic by 48 days after implants. Female mice exhibited no bladder dysfunction at any age up to 20 mo and gained weight normally. In contrast, by 7 mo, male Akita mice developed a profound polyuria and failed to show normal weight gain. There were no observable signs of bladder dysfunction in either sex. DIO mice on high/low-fat diets for 16 mo exhibited mild hyperglycemia in female mice (not in male mice), mild weight gain, and no evidence of bladder dysfunction. Ob/ob mice were followed for 8 mo and became extremely obese. Male and female mice were glucose intolerant, insulin intolerant, and hyperinsulinemic at 4 mo. By 8 mo, their metabolic status had improved but was still abnormal. Urine volume increased in male mice but not in female mice. Bladder dysfunction was observed in the spotting patterns of female mice at 4 and 6 mo of age, resolving by 8 mo. We conclude there are dramatic sex-related differences in lower urinary tract function in these models. Male Akita mice may be a good model for polyuria-related bladder remodeling, whereas female ob/ob mice may better mimic storage problems related to loss of outlet control in a setting of type 2 diabetes complicated by obesity.

Verstegen, A. M.; Tish, M. M.; Szczepanik, L. P.; Zeidel, M. L.; Geerling, J. C. Micturition video thermography in awake, behaving mice.. Journal of neuroscience methods 2020, 331, 108449.

BACKGROUND: Our understanding of the neural circuits controlling micturition and continence is constrained by a paucity of techniques for measuring voiding in awake, behaving mice.

NEW METHOD: To facilitate progress in this area, we developed a new, non-invasive assay, micturition video thermography (MVT), using a down-facing thermal camera above mice on a filter paper floor.

RESULTS: Most C57B6/J mice void infrequently, with a stereotyped behavioral sequence, and usually in a corner. The timing of each void is indicated by the warm thermal contrast of freshly voided urine. Over the following 10-15 min, urine cools to ∼3 °C below the ambient temperature and spreads radially in the filter paper. By measuring the area of cool contrast comprising this "thermal void spot," we can derive the initially voided volume. Thermal videos also reveal mouse behaviors including a home-corner preference apart from void spots, and a stereotyped, seconds-long pause while voiding.

COMPARISON WITH EXISTING METHODS AND CONCLUSIONS: MVT is a robust, non-invasive method for measuring the timing, volume, and location of voiding. It improves on an existing technique, the void spot assay, by adding timing information, and unlike the cystometrogram preparation, MVT does not require surgical catheterization. Combining MVT with current neuroscience techniques will improve our understanding of the neural circuits that control continence, which is important for addressing the growing number of patients with urinary incontinence as the population ages.

Chen, H.; Vandorpe, D. H.; Xie, X.; Alper, S. L.; Zeidel, M. L.; Yu, W. Disruption of Cav1.2-mediated signaling is a pathway for ketamine-induced pathology.. Nature communications 2020, 11, 4328.

The general anesthetic ketamine has been repurposed by physicians as an anti-depressant and by the public as a recreational drug. However, ketamine use can cause extensive pathological changes, including ketamine cystitis. The mechanisms of ketamine's anti-depressant and adverse effects remain poorly understood. Here we present evidence that ketamine is an effective L-type Ca2+ channel (Cav1.2) antagonist that directly inhibits calcium influx and smooth muscle contractility, leading to voiding dysfunction. Ketamine prevents Cav1.2-mediated induction of immediate early genes and transcription factors, and inactivation of Cav1.2 in smooth muscle mimics the ketamine cystitis phenotype. Our results demonstrate that ketamine inhibition of Cav1.2 signaling is an important pathway mediating ketamine cystitis. In contrast, Cav1.2 agonist Bay k8644 abrogates ketamine-induced smooth muscle dysfunction. Indeed, Cav1.2 activation by Bay k8644 decreases voiding frequency while increasing void volume, indicating Cav1.2 agonists might be effective drugs for treatment of bladder dysfunction.