Publications

2007

Meiyappan, Muthuraman, Gabriel Birrane, and John A A Ladias. (2007) 2007. “Structural Basis for Polyproline Recognition by the FE65 WW Domain.”. Journal of Molecular Biology 372 (4): 970-80. https://doi.org/10.1016/j.jmb.2007.06.064.

The neuronal protein FE65 functions in brain development and amyloid precursor protein (APP) signaling through its interaction with the mammalian enabled (Mena) protein and APP, respectively. The recognition of short polyproline sequences in Mena by the FE65 WW domain has a central role in axon guidance and neuronal positioning in the developing brain. We have determined the crystal structures of the human FE65 WW domain (residues 253-289) in the apo form and bound to the peptides PPPPPPLPP and PPPPPPPPPL, which correspond to human Mena residues 313-321 and 347-356, respectively. The FE65 WW domain contains two parallel ligand-binding grooves, XP (formed by residues Y269 and W280) and XP2 (formed by Y269 and W271). Both Mena peptides adopt a polyproline helical II conformation and bind to the WW domain in a forward (N-C) orientation through selection of the PPPPP motif by the XP and XP2 grooves. This mode of ligand recognition is strikingly similar to polyproline interaction with SH3 domains. Importantly, comparison of the FE65 WW structures in the apo and liganded forms shows that the XP2 groove is formed by an induced-fit mechanism that involves movements of the W271 and Y269 side-chains upon ligand binding. These structures elucidate the molecular determinants underlying polyproline ligand selection by the FE65 WW domain and provide a framework for the design of small molecules that would interfere with FE65 WW-ligand interaction and modulate neuronal development and APP signaling.

2006

Tiburu, Elvis K, Ethan S Karp, Gabriel Birrane, Jochem O Struppe, Shidong Chu, Gary A Lorigan, Shalom Avraham, and Hava Karsenty Avraham. (2006) 2006. “31P and 2H Relaxation Studies of Helix VII and the Cytoplasmic Helix of the Human Cannabinoid Receptors Utilizing Solid-State NMR Techniques.”. Biochemistry 45 (23): 7356-65.

Cannabinoid receptors are G-protein-coupled receptors comprised of seven transmembrane helices. We hypothesized that the extended helix of the receptor interacts differently with POPC bilayers due to the differing distribution of charged amino acid residues. To test this, hCB1(T377-E416) and hCB2(K278-H316) peptides were studied with 31P and 2H solid-state NMR spectroscopy by incorporating them into 1-palmitoyl-2-oleoyl-sn-glycerophosphocholine bilayers. Lipid affinities of the 40- and 39-residue peptides were analyzed on the basis of 31P and 2H spectral line shapes, order parameters, and T1 relaxation measurements of the POPC bilayers. Lipid headgroup perturbations were noticed in the 31P NMR spectra in the lipid/peptide mixtures when compared with the pure lipids. 2H order parameters were calculated from the quadrupolar splitting of the de-Paked 2H NMR spectra. At the top of the acyl chain, pure lipids had an average S(CD) approximately = 0.20, whereas S(CD) approximately = 0.16 and S(CD) approximately = 0.18 were found in the presence of hCB1(T377-E416) and hCB2(K278-H316), respectively. S(CD) values decreased in the central part of the acyl chains when compared to the pure POPC lipids, indicating a change in the dynamic properties of the lipid membrane in the presence of the cannabinoid peptides. R(1Z) vs S2(CD) plots exhibited a linear dependency with and without the peptides, with an increase in slope upon addition of the peptides to the POPC, indicating that the dynamics of the lipid bilayer is dominated by fast axially symmetric motion. This study provides insights into the interaction of cannabinoid peptides with the membrane bilayer by investigating the headgroup and acyl chain dynamics.

2005

Varma, Ashok K, Raymond S Brown, Gabriel Birrane, and John A A Ladias. (2005) 2005. “Structural Basis for Cell Cycle Checkpoint Control by the BRCA1-CtIP Complex.”. Biochemistry 44 (33): 10941-6.

The breast and ovarian tumor suppressor BRCA1 has important functions in cell cycle checkpoint control and DNA repair. Two tandem BRCA1 C-terminal (BRCT) domains are essential for the tumor suppression activity of BRCA1 and interact in a phosphorylation-dependent manner with proteins involved in DNA damage-induced checkpoint control, including the DNA helicase BACH1 and the CtBP-interacting protein (CtIP). The crystal structure of the BRCA1 BRCT repeats bound to the PTRVSpSPVFGAT phosphopeptide corresponding to residues 322-333 of human CtIP was determined at 2.5 A resolution. The peptide binds to a cleft formed by the interface of the two BRCTs in a two-pronged manner, with phospho-Ser327 and Phe330 anchoring the peptide through extensive contacts with BRCA1 residues. Several hydrogen bonds and salt bridges that stabilize the BRCA1-BACH1 complex are missing in the BRCA1-CtIP interaction, offering a structural basis for the approximately 5-fold lower affinity of BRCA1 for CtIP compared to that of BACH1, as determined by isothermal titration calorimetry. Importantly, the side chain of Arg1775 in the cancer-associated BRCA1 mutation M1775R sterically clashes with the phenyl ring of CtIP Phe330, disrupting the BRCA1-CtIP interaction. These results provide new insights into the molecular mechanisms underlying the dynamic selection of target proteins involved in DNA repair and cell cycle control by BRCA1 and reveal how certain cancer-associated mutations affect these interactions.

2004

Grassick, Alice, Patrick G Murray, Roisin Thompson, Catherine M Collins, Lucy Byrnes, Gabriel Birrane, Timothy M Higgins, and Maria G Tuohy. (2004) 2004. “Three-Dimensional Structure of a Thermostable Native Cellobiohydrolase, CBH IB, and Molecular Characterization of the Cel7 Gene from the Filamentous Fungus, Talaromyces Emersonii.”. European Journal of Biochemistry 271 (22): 4495-506.

The X-ray structure of native cellobiohydrolase IB (CBH IB) from the filamentous fungus Talaromyces emersonii, PDB 1Q9H, was solved to 2.4 A by molecular replacement. 1Q9H is a glycoprotein that consists of a large, single domain with dimensions of approximately 60 A x 40 A x 50 A and an overall beta-sandwich structure, the characteristic fold of Family 7 glycosyl hydrolases (GH7). It is the first structure of a native glycoprotein and cellulase from this thermophilic eukaryote. The long cellulose-binding tunnel seen in GH7 Cel7A from Trichoderma reesei is conserved in 1Q9H, as are the catalytic residues. As a result of deletions and other changes in loop regions, the binding and catalytic properties of T. emersonii 1Q9H are different. The gene (cel7) encoding CBH IB was isolated from T. emersonii and expressed heterologously with an N-terminal polyHis-tag, in Escherichia coli. The deduced amino acid sequence of cel7 is homologous to fungal cellobiohydrolases in GH7. The recombinant cellobiohydrolase was virtually inactive against methylumberiferyl-cellobioside and chloronitrophenyl-lactoside, but partial activity could be restored after refolding of the urea-denatured enzyme. Profiles of cel7 expression in T. emersonii, investigated by Northern blot analysis, revealed that expression is regulated at the transcriptional level. Putative regulatory element consensus sequences for cellulase transcription factors have been identified in the upstream region of the cel7 genomic sequence.

2003

Grassick, Alice, Gabriel Birrane, Maria Tuohy, Patrick Murray, and Timothy Higgins. (2003) 2003. “Crystallization and Preliminary Crystallographic Analysis of the Catalytic Domain Cellobiohydrolase I from Talaromyces Emersonii.”. Acta Crystallographica. Section D, Biological Crystallography 59 (Pt 7): 1283-4.

Cellobiohydrolase IB is the first native enzyme from the filamentous fungus Talaromyces emersonii to be crystallized. It is a highly thermostable exo-acting enzyme. The native enzyme (MW = 56 kDa) was crystallized using the hanging-drop vapour-diffusion method with ammonium phosphate (dibasic) as a precipitant at pH 8.5. The crystal belongs to the tetragonal space group P4(1)2(1)2, with unit-cell parameters a = b = 74.43, c = 176.92 A, and diffracted to 1.77 A resolution at room temperature.

Birrane, Gabriel, Judy Chung, and John A A Ladias. (2003) 2003. “Novel Mode of Ligand Recognition by the Erbin PDZ Domain.”. The Journal of Biological Chemistry 278 (3): 1399-402.

Erbin contains a class I PDZ domain that binds to the C-terminal region of the receptor tyrosine kinase ErbB2, a class II ligand. The crystal structure of the human Erbin PDZ bound to the peptide EYLGLDVPV corresponding to the C-terminal residues 1247-1255 of human ErbB2 has been determined at 1.25-A resolution. The Erbin PDZ deviates from the canonical PDZ fold in that it contains a single alpha-helix. The isopropyl group of valine at position -2 of the ErbB2 peptide interacts with the Erbin Val(1351) and displaces the peptide backbone away from the alpha-helix, elucidating the molecular basis of class II ligand recognition by a class I PDZ domain. Strikingly, the phenolic ring of tyrosine -7 enters into a pocket formed by the extended beta 2-beta 3 loop of the Erbin PDZ. Phosphorylation of tyrosine -7 abolishes this interaction but does not affect the binding of the four C-terminal peptidic residues to PDZ, as revealed by the crystal structure of the Erbin PDZ complexed with a phosphotyrosine-containing ErbB2 peptide. Since phosphorylation of tyrosine -7 plays a critical role in ErbB2 function, the selective binding and sequestration of this residue in its unphosphorylated state by the Erbin PDZ provides a novel mechanism for regulation of the ErbB2-mediated signaling and oncogenicity.