Abstract
Magnetic Particle Imaging (MPI) is a new type of tracer-based imaging that has great spatial and temporal resolution, does not require ionizing radiation, and can see deep into tissues by directly measuring the nonlinear magnetization response of superparamagnetic iron oxide nanoparticles (SPIONs). Unlike Magnetic Resonance Imaging (MRI) or Computed Tomography (CT), MPI has very high contrast and quantitative accuracy, which makes it perfect for use in dynamic cardiovascular applications. This study presents a full picture of the most recent changes in cardiac MPI, such as the physics behind Field-Free Point (FFP) and Field-Free Line (FFL) encoding, new ideas for tracer design, and important steps in the evolution of scanner hardware. We discuss the clinical relevance of cardiac MPI in visualizing myocardial perfusion, quantifying blood flow, and guiding real-time interventions. A hybrid imaging workflow, which improves anatomical detail and functional assessment, is utilized to explore the integration of MPI with complementary modalities, particularly MRI. By consolidating recent preclinical breakthroughs and highlighting the roadmap toward human-scale implementation, this article underscores the transformative potential of MPI in cardiac diagnostics and image-guided therapy.