Chemokine binding to PSGL-1 is controlled by O-glycosylation and tyrosine sulfation.

Goth CK, Mehta AY, McQuillan AM, Baker KJ, Hanes MS, Park SS, Stavenhagen K, Hjortø GM, Heimburg-Molinaro J, Chaikof EL, et al. Chemokine binding to PSGL-1 is controlled by O-glycosylation and tyrosine sulfation. Cell chemical biology. 2023;30(8):893–905.e7.

Abstract

Protein glycosylation influences cellular recognition and regulates protein interactions, but how glycosylation functions alongside other common posttranslational modifications (PTMs), like tyrosine sulfation (sTyr), is unclear. We produced a library of 53 chemoenzymatically synthesized glycosulfopeptides representing N-terminal domains of human and murine P-selectin glycoprotein ligand-1 (PSGL-1), varying in sTyr and O-glycosylation (structure and site). Using these, we identified key roles of PSGL-1 O-glycosylation and sTyr in controlling interactions with specific chemokines. Results demonstrate that sTyr positively affects CCL19 and CCL21 binding to PSGL-1 N terminus, whereas O-glycan branching and sialylation reduced binding. For murine PSGL-1, interference between PTMs is greater, attributed to proximity between the two PTMs. Using fluorescence polarization, we found sTyr is a positive determinant for some chemokines. We showed that synthetic sulfopeptides are potent in decreasing chemotaxis of human dendritic cells toward CCL19 and CCL21. Our results provide new research avenues into the interplay of PTMs regulating leukocyte/chemokine interactions.

Last updated on 11/02/2023
PubMed