The dysfunctional LDL receptor in a monensin-resistant mutant of Chinese hamster ovary cells lacks selected O-linked oligosaccharides.

Abstract

The Chinese hamster ovary (CHO) cell line Monr31, which is resistant to the cytotoxic ionophore monensin, produces a receptor for the low density lipoprotein (LDL) that has a lowered binding affinity for LDL and is approximately 5 kDa smaller in size than the receptor from parental CHO cells. It has been proposed that the reduced size and affinity for LDL are associated with a reduced level of O-glycosylation of Ser/Thr residues in the receptor. To examine this possibility in more detail, both parental CHO and Monr31 cells were metabolically radiolabeled with [3H]glucosamine, and the labeled LDL receptors were purified by immunoprecipitation and identified by SDS-PAGE-fluorography. The Ser/Thr-linked oligosaccharides in the receptors from both parental CHO and Monr31 cells are mono- and desialylated species having the common core structure Gal beta 1-3GalNAc. The receptor from Monr31 cells, however, contains about one-third fewer Ser/Thr-linked oligosaccharides than the receptor from parental CHO cells. Analysis of the glycopeptides derived from the Monr31 cell LDL receptors indicates that they contain Ser/Thr-linked oligosaccharides only in the clustered domain and are missing Ser/Thr-linked oligosaccharides in the unclustered regions of the protein. Additionally, analysis of a human LDL receptor lacking the domain for attachment of the clustered Ser/Thr-linked oligosaccharides and expressed in both parental CHO and Monr31 cells indicated that the truncated human receptor from Monr31 cells is devoid of Ser/Thr-linked oligosaccharides. In contrast, the truncated human receptor produced by parental CHO cells contains Ser/Thr-linked oligosaccharides contributing approximately 5 kDa to its apparent size. Collectively, these results demonstrate that the LDL receptor produced by the Monr31 cells contains Ser/Thr-linked oligosaccharides in the clustered domain but is missing Ser/Thr-linked oligosaccharides in the unclustered, NH2-terminal domains of the receptor.
Last updated on 03/06/2023