Site-specific N-glycosylation and oligosaccharide structures of recombinant HIV-1 gp120 derived from a baculovirus expression system.

Abstract

We report the complete structures of the N-linked oligosaccharides and the site-specificity of the N-glycosylation of recombinant gp120 (rgp120) of the HIV-1 BH8 isolate produce by a baculovirus expression system. Glycopeptides derived from the tryptic digests of intact rgp120 or of cyanogen bromide-generated fragments of rgp120 were isolated by their binding to concanavalin A-Sepharose and were purified by reversed-phase HPLC. The isolated glycopeptides were treated with PNGase F, releasing the carbohydrate moiety while converting Asn to Asp, and identified by amino acid analysis and/or peptide sequencing. Our results indicate that all 22 potential N-glycosylation sites in the rgp120 sequence are utilized. We did not detect N-acetylgalactosamine in rgp120, indicating that the glycoprotein lacks typical O-linked oligosaccharides. To investigate the oligosaccharide structures at the sites of glycosylation, we determined the carbohydrate composition for each site and characterized the oligosaccharides by 1H-NMR spectroscopy and by oligosaccharide mapping using high pH anion-exchange chromatography. Mannose and N-acetylglucosamine were the only sugars observed in the intact rgp120 and likewise in individual glycopeptides. All glycopeptides derived from rgp120 contained high mannose-type N-linked oligosaccharides, ranging from GlcNAc2Man5 to GlcNAc2Man9. However, different glycosylation sites showed varied degrees of processing of the high mannose-type oligosaccharides, as characterized by the ratio of GlcNAc2Man8-9 to GlcNAc2Man5-7. These results demonstrate that N-glycosylation of rgp120 in the baculovirus expression system occurs at all potential sites and is site specific in terms of oligosaccharide structures.
Last updated on 03/06/2023