Publications

2018

Behrens A, Duke R, Petralia L, Lehoux, Carlow C, Taron C, Foster J. Changes in canine serum N-glycosylation as a result of infection with the heartworm parasite Dirofilaria immitis.. Sci Rep. 2018;8(1):16625.
Filariases are diseases caused by infection with filarial nematodes and transmitted by insect vectors. The filarial roundworm Dirofilaria immitis causes heartworm disease in dogs and other carnivores. D. immitis is closely related to Onchocerca volvulus, Wuchereria bancrofti and Brugia malayi, which cause onchocerciasis (river blindness) and lymphatic filariasis (elephantiasis) in humans and are neglected tropical diseases. Serum N-glycosylation is very sensitive to both pathological infections and changes in mammalian biology due to normal aging or lifestyle choices. Here, we report significant changes in the serum N-glycosylation profiles of dogs infected with D. immitis. Our data derive from analysis of serum from dogs with established patent infections and from a longitudinal infection study. Overall, galactosylation and core fucosylation increase, while sialylation decreases in infected dog sera. We also identify individual glycan structures that change significantly in their relative abundance during infection. Notably, the abundance of the most dominant N-glycan in canine serum (biantennary, disialylated A2G2S2) decreases by over 10 percentage points during the first 6 months of infection in each dog analyzed. This is the first longitudinal study linking changes in mammalian serum N-glycome to progression of a parasitic infection
Behrens A, Duke R, Petralia L, Harvey D, Lehoux, Magnelli P, Taron C, Foster J. Glycosylation profiling of dog serum reveals differences compared to human serum.. Glycobiology. 2018;28(11):825–831.
Glycosylation is the most common post-translational modification of serum proteins, and changes in the type and abundance of glycans in human serum have been correlated with a growing number of human diseases. While the glycosylation pattern of human serum is well studied, little is known about the profiles of other mammalian species. Here, we report detailed glycosylation profiling of canine serum by hydrophilic interaction chromatography-ultraperformance liquid chromatography (HILIC-UPLC) and mass spectrometry. The domestic dog (Canis familiaris) is a widely used model organism and of considerable interest for a large veterinary community. We found significant differences in the serum N-glycosylation profile of dogs compared to that of humans, such as a lower abundance of galactosylated and sialylated glycans. We also compare the N-glycan profile of canine serum to that of canine IgG - the most abundant serum glycoprotein. Our data will serve as a baseline reference for future studies when performing serum analyses of various health and disease states in dogs.
Koelsch K, Cavett J, Smith K, Moor J, Lehoux S, Jia N, Mather T, Quadri SM, Rasmussen A, Kaufman E, et al. Evidence for Alternate Modes of B cell Activation Involving Fab Acquired-N-Glycosylations in Antibody Secreting Cells Infiltrating the Labial Salivary Glands of Sjögren’s Syndrome Patients.. Arthritis Rheumatol. 2018.

OBJECTIVE:

To better understand the role of B cells, potential mechanisms for their aberrant activation, and the production of autoantibodies in the pathogenesis of Sjögren's Syndrome (SS), we explored selection pressures and N-glycosylation acquired by somatic mutation (acN-glyc) in the immunoglobulin (Ig) variable regions (V-regions) of antibody secreting cells (ASCs) isolated from the minor salivary glands of SS patients and non-SS controls with sicca symptoms.

METHODS:

We report a novel method to produce and characterize recombinant monoclonal antibodies (mAbs) from SS patient and control labial salivary gland single-cell sorted ASC infiltrates that can be utilized to concurrently probe any other expressed genes. V-regions were amplified by RT-PCR, sequenced, and analyzed for incidence of N-glycosylation and selection pressure, then expressed as the native mAbs, or mutant mAbs lacking the acN-glyc for specificity testing. Protein modeling was used to demonstrate how even acN-glycs outside of the complementarity-determining region (CDR) could participate in, or inhibit, antigen binding.

RESULTS:

V-region sequence analyses revealed clonal expansions and evidence for secondary light chain editing and allelic inclusion not previously reported in SS. We found increased acN-glycs in the sequences from SS patients and that acN-glycs were associated with increased replacement mutations and lowered selection pressure. We also identified a clonal set of polyreactive mAbs with differential FWR1 acN-glycs and demonstrated that removal of the acN-glyc could nearly abolish binding to the autoantigens.

CONCLUSION:

Our findings support an alternative mechanism involving V-region N-glycosylation for the selection and proliferation of some autoreactive B cells in SS patients.

Kudelka M, Nairn A, Sardar M, Sun X, Chaikof E, Ju T, Moremen K, Cummings R. Isotopic Labeling with Cellular O-glycome Reporter/Amplification (ICORA) for Comparative O-glycomics of Cultured Cells. Glycobiology. 2018.
Mucin-type O-glycans decorate >80% of secretory and cell surface proteins and contribute to health and disease. However, dynamic alterations in the O-glycome are poorly understood because current O-glycomic methodologies are not sufficiently sensitive nor quantitative. Here we describe a novel isotope labeling approach termed Isotope-Cellular O-glycome Reporter Amplification (ICORA) to amplify and analyze the O-glycome from cells. In this approach, cells are incubated with Ac3GalNAc-Bn (Ac3GalNAc-[1H7]Bn) or a heavy labeled Ac3GalNAc-BnD7 (Ac3GalNAc-[2D7]Bn) O-glycan precursor (7 Da mass difference), which enters cells and upon de-esterification is modified by Golgi enzymes to generate Bn-O-glycans secreted into the culture media. After recovery, heavy and light Bn-O-glycans from two separate conditions are mixed, analyzed by MS, and statistically interrogated for changes in O-glycan abundance using a semi-automated approach. ICORA enables ~100–1000 fold enhanced sensitivity and increased throughput compared to traditional O-glycomics. We validated ICORA with model cell lines and used it to define alterations in the O-glycome in colorectal cancer. ICORA is a useful tool to explore the dynamic regulation of the O-glycome in health and disease.
Purohit S, Li T, Guan W, Song X, Song J, Yanna T, Li L, Sharma A, Dun B, Mysona D, et al. Multiplex glycan bead array for high throughput and high content analyses of glycan binding proteins. Nature Commun. 2018;9(1):258.
Glycan-binding proteins (GBPs) play critical roles in diverse cellular functions such as cell adhesion, signal transduction and immune response. Studies of the interaction between GBPs and glycans have been hampered by the availability of high throughput and high-content technologies. Here we report multiplex glycan bead array (MGBA) that allows simultaneous analyses of 384 samples and up to 500 glycans in a single assay. The specificity, sensitivity and reproducibility of MGBA are evaluated using 39 plant lectins, 13 recombinant anti-glycan antibodies, and mammalian GBPs. We demonstrate the utility of this platform by the analyses of natural anti-glycan IgM and IgG antibodies in 961 human serum samples and the discovery of anti-glycan antibody biomarkers for ovarian cancer. Our data indicate that the MGBA platform is particularly suited for large population-based studies that require the analyses of large numbers of samples and glycans.
Jankowska E, Parsons L, Song X, Smith D, Cummings R, Cipollo J. A Comprehensive Caenorhabditis elegans N-glycan Shotgun Array. Glycobiology. 2018.
Here we present a Caenorhabditis elegans N-glycan shotgun array. This nematode serves as a model organism for many areas of biology including but not limited to tissue development, host–pathogen interactions, innate immunity, and genetics. Caenorhabditis elegans N-glycans contain structural motifs that are also found in other nematodes as well as trematodes and lepidopteran species. Glycan binding toxins that interact with C. elegansglycoconjugates also do so with some agriculturally relevant species, such as Haemonchus contortusAscaris suumOesophagostomum dentatum and Trichoplusia ni. This situation implies that protein–carbohydrate interactions seen with C. elegans glycans may also occur in other species with related glycan structures. Therefore, this array may be useful to study these relationships in other nematodes as well as trematode and insect species. The array contains 134 distinct glycomers spanning a wide range of C. elegans N-glycans including the subclasses high mannose, pauci mannose, high fucose, mammalian-like complex and phosphorylcholine substituted forms. The glycans presented on the array have been characterized by two-dimensional separation, ion trap mass spectrometry, and lectin affinity. High fucose glycans were well represented and contain many novel core structures found in C. elegans as well as other species. This array should serve as an investigative platform for carbohydrate binding proteins that interact with N-glycans of C. elegans and over a range of organisms that contain glycan motifs conserved with this nematode.

2017

Pantophlet R, Trattnig N, Murrell S, Lu N, Chau D, Rempel C, Wilson I, Kosma P. Bacterially derived synthetic mimetics of mammalian oligomannose prime antibody responses that neutralize HIV infectivity. Nat Commun. 2017;8(1):1601. doi:10.1038/s41467-017-01640-y
Oligomannose-type glycans are among the major targets on the gp120 component of the HIV envelope protein (Env) for broadly neutralizing antibodies (bnAbs). However, attempts to elicit oligomannose-specific nAbs by immunizing with natural or synthetic oligomannose have so far not been successful, possibly due to B cell tolerance checkpoints. Here we design and synthesize oligomannose mimetics, based on the unique chemical structure of a recently identified bacterial lipooligosaccharide, to appear foreign to the immune system. One of these mimetics is bound avidly by members of a family of oligomannose-specific bnAbs and their putative common germline precursor when presented as a glycoconjugate. The crystal structure of one of the mimetics bound to a member of this bnAb family confirms the antigenic resemblance. Lastly, immunization of human-antibody transgenic animals with a lead mimetic evokes nAbs with specificities approaching those of existing bnAbs. These results provide evidence for utilizing antigenic mimicry to elicit oligomannose-specific bnAbs to HIV-1.
Collins B, Nakahara H, Acharya S, Cooper M, Herrin B, Wilson I. Crystal structure of an anti-idiotype variable lymphocyte receptor. Acta Crystallogr F Struct Biol Commun. 2017;73(Pt 12):682–687. doi:10.1107/S2053230X1701620X
Variable lymphocyte receptors (VLRs), the leucine-rich repeat (LRR)-based antigen receptors of jawless fish, have great utility in a wide variety of biochemical and biological applications, similar to classical Ig-based antibodies. VLR-based reagents may be particularly useful when traditional antibodies are not available. An anti-idiotype lamprey VLR, VLR39, has previously been identified that recognizes the heavy-chain CDR3 of the B-cell receptor (BCR) of a leukemic clone from a patient with chronic lymphocytic leukemia (CLL). VLR39 was used successfully to track the re-emergence of this clone in the patient following chemotherapy. Here, the crystal structure of VLR39 is presented at 1.5 Å resolution and compared with those of other protein-specific VLRs. VLR39 adopts a curved solenoid fold and exhibits substantial structural similarity to other protein-binding VLRs. VLR39 has a short LRRCT loop that protrudes outwards away from the concave face and is similar to those of its protein-specific VLR counterparts. Analysis of the VLR39-BCR interaction by size-exclusion chromatography and biolayer interferometry using the scFv version of the BCR confirms that VLR39 recognizes the BCR Fv region. Such VLR-based reagents may be useful for identifying and monitoring leukemia in CLL patients and in other clinical diagnostic assays.
Bunker J, Erickson S, Flynn T, Henry C, Koval J, Meisel M, Jabri B, Antonopoulos D, Wilson P, Bendelac A. Natural polyreactive IgA antibodies coat the intestinal microbiota. Science. 2017;358(6361). doi:10.1126/science.aan6619
Large quantities of immunoglobulin A (IgA) are constitutively secreted by intestinal plasma cells to coat and contain the commensal microbiota, yet the specificity of these antibodies remains elusive. Here we profiled the reactivities of single murine IgA plasma cells by cloning and characterizing large numbers of monoclonal antibodies. IgAs were not specific to individual bacterial taxa but rather polyreactive, with broad reactivity to a diverse, but defined, subset of microbiota. These antibodies arose at low frequencies among naïve B cells and were selected into the IgA repertoire upon recirculation in Peyer's patches. This selection process occurred independent of microbiota or dietary antigens. Furthermore, although some IgAs acquired somatic mutations, these did not substantially influence their reactivity. These findings reveal an endogenous mechanism driving homeostatic production of polyreactive IgAs with innate specificity to microbiota.
Zhang W, Eijk M, Guo H, Dijk A, Bleijerveld O, Verheije H, Wang G, Haagsman H, Veldhuizen E. Expression and characterization of recombinant chicken mannose binding lectin. Immunobiology. 2017;222(3):518–528. doi:10.1016/j.imbio.2016.10.019
Mannose binding lectin (MBL) is a serum collagenous C-type lectin that plays an important role in the innate immune protection against pathogens. Previously, human and mouse studies have demonstrated that MBL binds a broad range of pathogens that results in their neutralization through agglutination, enhanced phagocytosis, and/or complement activation via the lectin pathway. The role of MBL in chicken is not well understood although the MBL concentration in serum seems to correlate with protection against infections. To investigate the role of MBL in chicken further, recombinant chicken MBL (RcMBL) was produced in HeLa R19 cells and purified using mannan affinity chromatography followed by gel filtration. RcMBL was shown to be structurally and functionally similar to native chicken MBL (NcMBL) isolated from serum. RcMBL is expressed as an oligomeric protein (mixture of trimers and oligomerized trimers) with a monomeric mass of 26kDa as determined by mass spectrometry, corresponding to the predicted mass. Glycan array analysis indicated that RcMBL bound most strongly to high-mannose glycans but also glycans with terminal fucose and GlcNac residues. The biological activity of RcMBL was demonstrated via its capacity to agglutinate Salmonella Typhimurium and to inhibit the hemagglutination activity of influenza A virus. The production of a structurally well-characterized and functionally active RcMBL will facilitate detailed studies into the protective role of MBL in innate defense against pathogens in chicken and other avian species.