Publications

2022

Matsumoto Y, Aryal R, Heimburg-Molinaro J, Park S, Wever W, Lehoux S, Stavenhagen K, Wijk J, Die I, Chapman A, et al. Identification and characterization of circulating immune complexes in IgA nephropathy. Science Advances. 2022;8(43).
The underlying pathology of immunoglobulin A (IgA) nephropathy (IgAN), the most common glomerulonephritis worldwide, is driven by the deposition of immune complexes containing galactose-deficient IgA1 [Tn(+)IgA1] in the glomerular mesangium. Here, we report that novel anti-Tn circulating immune complexes (anti-Tn CICs) contain predominantly IgM, representing large macromolecular complexes of ~1.2 megadaltons to several megadalton sizes together with Tn(+)IgA1 and some IgG. These complexes are significantly elevated in sera of patients with IgAN, which contains higher levels of complement C3, compared to healthy individuals. Anti-Tn CICs are bioactive and induce specific proliferation of human renal mesangial cells. We found that these anti-Tn CICs can be dissociated with small glycomimetic compounds, which mimic the Tn antigen of Tn(+)IgA1, releasing IgA1 from anti-Tn CICs. This glycomimetic compound can also significantly inhibit the proliferative activity of anti-Tn CICs of patients with IgAN. These findings could enhance both the diagnosis of IgAN and its treatment, as specific drug treatments are now unavailable.
Cummings R. The mannose receptor ligands and the macrophage glycome. Curr Opin Struct Biol. 2022;75:102394. doi:10.1016/j.sbi.2022.102394
A unique glycan-binding protein expressed in macrophages and some types of other immune cells is the mannose receptor (MR, CD206). It is an endocytic, transmembrane protein with multiple glycan-binding domains and different specificities in binding glycans. The mannose receptor is important as it has major roles in diverse biological processes, including regulation of circulating levels of reproductive hormones, homeostasis, innate immunity, and infections. These different functions involve the recognition of a wide range of glycans, and their nature is currently under intense study. But the mannose receptor is just one of many glycan-binding proteins expressed in macrophages, leading to an interest in the potential relationship between the macrophage glycome and how it may regulate cognate glycan-binding protein activities. This review focuses primarily on the mannose receptor and its carbohydrate ligands, as well as macrophages and their glycomes.
McKitrick T, Hanes M, Rosenberg C, Heimburg-Molinaro J, Cooper M, Herrin B, Cummings R. Identification of Glycan-Specific Variable Lymphocyte Receptors Using Yeast Surface Display and Glycan Microarrays. Methods Mol Biol. 2022;2421:73–89. doi:10.1007/978-1-0716-1944-5_5
The jawless vertebrates (lamprey and hagfish) evolved a novel adaptive immune system with many similarities to that found in the jawed vertebrates, including the production of antigen-specific circulating antibodies in response to immunization. However, the jawless vertebrates use leucine-rich repeat (LRR)-based antigen receptors termed variable lymphocyte receptors (VLRs) for immune recognition, instead of immunoglobulin (Ig)-based receptors. VLR genes are assembled in developing lymphocytes through a gene conversion-like process, in which hundreds of LRR gene segments are randomly selected as template donors to generate a large repertoire of distinct antigen receptors, similar to that found within the mammalian adaptive immune system. Here we describe the development of a robust platform using immunized lampreys (Petromyzon marinus) for generating libraries of anti-carbohydrate (anti-glycan) variable lymphocyte receptor B, or VLRBs. The anti-carbohydrate VLRBs are isolated using a yeast surface display (YSD) expression platform and enriched by binding to glycan microarrays through the anti-glycan VLRB. This enables both the initial identification and enrichment of individual yeast clones against hundreds of glycans simultaneously. Through this enrichment strategy a broad array of glycan-specific VLRs can be isolated from the YSD library. Subsequently, the bound yeast cells are directly removed from the microarray, the VLR antibody clone is sequenced, and the end product is expressed as a VLR-IgG-Fc fusion protein that can be used for ELISA, Western blotting, flow cytometry, and immunomicroscopy. Thus, by combining yeast surface display with glycan microarray technology, we have developed a rapid, efficient, and novel method for generating chimeric VLR-IgG-Fc proteins that recognize a broad array of unique glycan structures with exquisite specificity.
Blenda A, Kamili N, Wu S-C, Abel W, Ayona D, Gerner-Smidt C, Ho A, Benian G, Cummings R, Arthur C, et al. Galectin-9 recognizes and exhibits antimicrobial activity toward microbes expressing blood group-like antigens. J Biol Chem. 2022;298(4):101704. doi:10.1016/j.jbc.2022.101704
While adaptive immunity recognizes a nearly infinite range of antigenic determinants, immune tolerance renders adaptive immunity vulnerable to microbes decorated in self-like antigens. Recent studies suggest that sugar-binding proteins galectin-4 and galectin-8 bind microbes expressing blood group antigens. However, the binding profile and potential antimicrobial activity of other galectins, particularly galectin-9 (Gal-9), has remained incompletely defined. Here, we demonstrate that while Gal-9 possesses strong binding preference for ABO(H) blood group antigens, each domain exhibits distinct binding patterns, with the C-terminal domain (Gal-9C) exhibiting higher binding to blood group B than the N-terminal domain (Gal-9N). Despite this binding preference, Gal-9 readily killed blood group B-positive Escherichia coli, whereas Gal-9N displayed higher killing activity against this microbe than Gal-9C. Utilization of microarrays populated with blood group O antigens from a diverse array of microbes revealed that Gal-9 can bind various microbial glycans, whereas Gal-9N and Gal-9C displayed distinct and overlapping binding preferences. Flow cytometric examination of intact microbes corroborated the microbial glycan microarray findings, demonstrating that Gal-9, Gal-9N, and Gal-9C also possess the capacity to recognize distinct strains of Providencia alcalifaciens and Klebsiella pneumoniae that express mammalian blood group-like antigens while failing to bind related strains that do not express mammalian-like glycans. In each case of microbial binding, Gal-9, Gal-9N, and Gal-9C induced microbial death. In contrast, while Gal-9, Gal-9N, and Gal-9C engaged red blood cells, each failed to induce hemolysis. These data suggest that Gal-9 recognition of distinct microbial strains may provide antimicrobial activity against molecular mimicry.
Bojar D, Meche L, Meng G, Eng W, Smith D, Cummings R, Mahal L. A Useful Guide to Lectin Binding: Machine-Learning Directed Annotation of 57 Unique Lectin Specificities. ACS Chem Biol. 2022. doi:10.1021/acschembio.1c00689
Glycans are critical to every facet of biology and medicine, from viral infections to embryogenesis. Tools to study glycans are rapidly evolving; however, the majority of our knowledge is deeply dependent on binding by glycan binding proteins (e.g., lectins). The specificities of lectins, which are often naturally isolated proteins, have not been well-defined, making it difficult to leverage their full potential for glycan analysis. Herein, we use a combination of machine learning algorithms and expert annotation to define lectin specificity for this important probe set. Our analysis uses comprehensive glycan microarray analysis of commercially available lectins we obtained using version 5.0 of the Consortium for Functional Glycomics glycan microarray (CFGv5). This data set was made public in 2011. We report the creation of this data set and its use in large-scale evaluation of lectin-glycan binding behaviors. Our motif analysis was performed by integrating 68 manually defined glycan features with systematic probing of computational rules for significant binding motifs using mono- and disaccharides and linkages. Combining machine learning with manual annotation, we create a detailed interpretation of glycan-binding specificity for 57 unique lectins, categorized by their major binding motifs: mannose, complex-type N-glycan, O-glycan, fucose, sialic acid and sulfate, GlcNAc and chitin, Gal and LacNAc, and GalNAc. Our work provides fresh insights into the complex binding features of commercially available lectins in current use, providing a critical guide to these important reagents.
Williams S, Noel M, Lehoux S, Cetinbas M, Xavier R, Sadreyev R, Scolnick E, Smoller J, Cummings R, Mealer R. Mammalian brain glycoproteins exhibit diminished glycan complexity compared to other tissues. Nat Commun. 2022;13(1):275. doi:10.1038/s41467-021-27781-9
Glycosylation is essential to brain development and function, but prior studies have often been limited to a single analytical technique and excluded region- and sex-specific analyses. Here, using several methodologies, we analyze Asn-linked and Ser/Thr/Tyr-linked protein glycosylation between brain regions and sexes in mice. Brain N-glycans are less complex in sequence and variety compared to other tissues, consisting predominantly of high-mannose and fucosylated/bisected structures. Most brain O-glycans are unbranched, sialylated O-GalNAc and O-mannose structures. A consistent pattern is observed between regions, and sex differences are minimal compared to those in plasma. Brain glycans correlate with RNA expression of their synthetic enzymes, and analysis of glycosylation genes in humans show a global downregulation in the brain compared to other tissues. We hypothesize that this restricted repertoire of protein glycans arises from their tight regulation in the brain. These results provide a roadmap for future studies of glycosylation in neurodevelopment and disease.
Bojar D, Meche L, Meng G, Eng W, Smith DF, Cummings RD, Mahal LK. A Useful Guide to Lectin Binding: Machine-Learning Directed Annotation of 57 Unique Lectin Specificities. ACS chemical biology. 2022;17(11):2993–3012. doi:10.1021/acschembio.1c00689

Glycans are critical to every facet of biology and medicine, from viral infections to embryogenesis. Tools to study glycans are rapidly evolving; however, the majority of our knowledge is deeply dependent on binding by glycan binding proteins (e.g., lectins). The specificities of lectins, which are often naturally isolated proteins, have not been well-defined, making it difficult to leverage their full potential for glycan analysis. Herein, we use a combination of machine learning algorithms and expert annotation to define lectin specificity for this important probe set. Our analysis uses comprehensive glycan microarray analysis of commercially available lectins we obtained using version 5.0 of the Consortium for Functional Glycomics glycan microarray (CFGv5). This data set was made public in 2011. We report the creation of this data set and its use in large-scale evaluation of lectin-glycan binding behaviors. Our motif analysis was performed by integrating 68 manually defined glycan features with systematic probing of computational rules for significant binding motifs using mono- and disaccharides and linkages. Combining machine learning with manual annotation, we create a detailed interpretation of glycan-binding specificity for 57 unique lectins, categorized by their major binding motifs: mannose, complex-type N-glycan, O-glycan, fucose, sialic acid and sulfate, GlcNAc and chitin, Gal and LacNAc, and GalNAc. Our work provides fresh insights into the complex binding features of commercially available lectins in current use, providing a critical guide to these important reagents.

Cummings RD. The mannose receptor ligands and the macrophage glycome. Current opinion in structural biology. 2022;75:102394. doi:10.1016/j.sbi.2022.102394

A unique glycan-binding protein expressed in macrophages and some types of other immune cells is the mannose receptor (MR, CD206). It is an endocytic, transmembrane protein with multiple glycan-binding domains and different specificities in binding glycans. The mannose receptor is important as it has major roles in diverse biological processes, including regulation of circulating levels of reproductive hormones, homeostasis, innate immunity, and infections. These different functions involve the recognition of a wide range of glycans, and their nature is currently under intense study. But the mannose receptor is just one of many glycan-binding proteins expressed in macrophages, leading to an interest in the potential relationship between the macrophage glycome and how it may regulate cognate glycan-binding protein activities. This review focuses primarily on the mannose receptor and its carbohydrate ligands, as well as macrophages and their glycomes.

Mealer RG, Williams SE, Noel M, Yang B, D’Souza AK, Nakata T, Graham DB, Creasey EA, Cetinbas M, Sadreyev RI, et al. The schizophrenia-associated variant in SLC39A8 alters protein glycosylation in the mouse brain. Molecular psychiatry. 2022;27(3):1405–1415. doi:10.1038/s41380-022-01490-1

A missense mutation (A391T) in SLC39A8 is strongly associated with schizophrenia in genomic studies, though the molecular connection to the brain is unknown. Human carriers of A391T have reduced serum manganese, altered plasma glycosylation, and brain MRI changes consistent with altered metal transport. Here, using a knock-in mouse model homozygous for A391T, we show that the schizophrenia-associated variant changes protein glycosylation in the brain. Glycosylation of Asn residues in glycoproteins (N-glycosylation) was most significantly impaired, with effects differing between regions. RNAseq analysis showed negligible regional variation, consistent with changes in the activity of glycosylation enzymes rather than gene expression. Finally, nearly one-third of detected glycoproteins were differentially N-glycosylated in the cortex, including members of several pathways previously implicated in schizophrenia, such as cell adhesion molecules and neurotransmitter receptors that are expressed across all cell types. These findings provide a mechanistic link between a risk allele and potentially reversible biochemical changes in the brain, furthering our molecular understanding of the pathophysiology of schizophrenia and a novel opportunity for therapeutic development.

Suzuki N, Abe T, Natsuka S. Structural analysis of N-glycans in chicken trachea and lung reveals potential receptors of chicken influenza viruses. Scientific reports. 2022;12(1):2081. doi:10.1038/s41598-022-05961-x

Although avian influenza A viruses (avian IAVs) bind preferentially to terminal sialic acids (Sia) on glycans that possess Siaα2-3Gal, the actual glycan structures found in chicken respiratory tracts have not been reported. Herein, we analyzed N-glycan structures in chicken trachea and lung, the main target tissues of low pathogenic avian IAVs. 2-Aminopyridine (PA)-labeled N-glycans from chicken tissues were analyzed by combined methods using reversed-phase liquid chromatography (LC), electrospray ionization (ESI)-mass spectrometry (MS), MS/MS, and multistage MS (MSn), with or without modifications using exoglycosidases, sialic acid linkage-specific alkylamidation (SALSA), and/or permethylation. The results of SALSA indicated that PA-N-glycans in both chicken trachea and lung harbored slightly more α2,6-Sia than α2,3-Sia. Most α2,3-Sia on N-glycans in chicken trachea was a fucosylated form (sialyl Lewis X, sLex), whereas no sLex was detected in lung. By contrast, small amounts of N-glycans with 6-sulfo sialyl LacNAc were detected in lung but not in trachea. Considering previous reports that hemagglutinins (HAs) of avian IAVs originally isolated from chicken bind preferentially to α2,3-Sia with or without fucosylation and/or 6-sulfation but not to α2,6-Sia, our results imply that avian IAVs do not evolve to possess HAs that bind preferentially to α2,6-Sia, regardless of the abundance of α2,6-Sia.