Publications

2016

Hewitson J, Nguyen L, Diepen A, Smit C, Koeleman C, McSorley H, Murray J, Maizels R, Hokke C. Novel O-linked methylated glycan antigens decorate secreted immunodominant glycoproteins from the intestinal nematode Heligmosomoides polygyrus. Int J Parasitol. 2016;46(3):157–170. doi:10.1016/j.ijpara.2015.10.004
Glycan molecules from helminth parasites have been associated with diverse biological functions ranging from interactions with neighbouring host cell populations to down-modulation of specific host immunity. Glycoproteins secreted by the intestinal nematode Heligmosomoides polygyrus are of particular interest as the excretory-secretory products (termed HES) of this parasite contain both heat-labile and heat-stable components with immunomodulatory effects. We used MALDI-TOF-MS and LC-MS/MS to analyse the repertoire of N- and O-linked glycans released from Heligmosomoides polygyrus excretory-secretory products by PNGase A and F, β-elimination and hydrazinolysis revealing a broad range of structures including novel methylhexose- and methylfucose-containing glycans. Monoclonal antibodies to two immunodominant glycans of H. polygyrus, previously designated Glycans A and B, were found to react by glycan array analysis to a methyl-hexose-rich fraction and to a sulphated LacDiNAc (LDN; GalNAcβ1-4GlcNAc) structure, respectively. We also analysed the glycan repertoire of a major glycoprotein in Heligmosomoides polygyrus excretory-secretory products, VAL-2, which contains many glycan structures present in Heligmosomoides polygyrus excretory-secretory products including Glycan A. However, it was found that this set of glycans is not responsible for the heat-stable immunomodulatory properties of Heligmosomoides polygyrus excretory-secretory products, as revealed by the inability of VAL-2 to inhibit allergic lung inflammation. Taken together, these studies reveal that H. polygyrus secretes a diverse range of antigenic glycoconjugates, and provides a framework to explore the biological and immunomodulatory roles they may play within the mammalian host.
Kudelka M, Hinrichs B, Darby T, Moreno C, Nishio H, Cutler C, Wang J, Wu H, Zeng J, Wang Y, et al. Cosmc is an X-linked inflammatory bowel disease risk gene that spatially regulates gut microbiota and contributes to sex-specific risk. Proc Natl Acad Sci U S A. 2016;113(51):14787–14792. doi:10.1073/pnas.1612158114
Inflammatory bowel disease (IBD) results from aberrant immune stimulation against a dysbiotic mucosal but relatively preserved luminal microbiota and preferentially affects males in early onset disease. However, factors contributing to sex-specific risk and the pattern of dysbiosis are largely unexplored. Core 1 β3GalT-specific molecular chaperone (Cosmc), which encodes an X-linked chaperone important for glycocalyx formation, was recently identified as an IBD risk factor by genome-wide association study. We deleted Cosmc in mouse intestinal epithelial cells (IECs) and found marked reduction of microbiota diversity in progression from the proximal to the distal gut mucosa, but not in the overlying lumen, as seen in IBD. This loss of diversity coincided with local emergence of a proinflammatory pathobiont and distal gut restricted pathology. Mechanistically, we found that Cosmc regulates host genes, bacterial ligands, and nutrient availability to control microbiota biogeography. Loss of one Cosmc allele in males (IEC-Cosmc(-/y)) resulted in a compromised mucus layer, spontaneous microbe-dependent inflammation, and enhanced experimental colitis; however, females with loss of one allele and mosaic deletion of Cosmc in 50% of crypts (IEC-Cosmc(+/-)) were protected from spontaneous inflammation and partially protected from experimental colitis, likely due to lateral migration of normal mucin glycocalyx from WT cells over KO crypts. These studies functionally validate Cosmc as an IBD risk factor and implicate it in regulating the spatial pattern of dysbiosis and sex bias in IBD.
Song X, Ju H, Lasanajak Y, Kudelka M, Smith D, Cummings R. Oxidative release of natural glycans for functional glycomics.. Nat Methods. 2016;13(6):528–34. doi:10.1038/nmeth.3861
Glycans have essential roles in biology and the etiology of many diseases. A major hurdle in studying glycans through functional glycomics is the lack of methods to release glycans from diverse types of biological samples. Here we describe an oxidative strategy using household bleach to release all types of free reducing N-glycans and O-glycan-acids from glycoproteins, and glycan nitriles from glycosphingolipids. Released glycans are directly useful in glycomic analyses and can be derivatized fluorescently for functional glycomics. This chemical method overcomes the limitations in glycan generation and promotes archiving and characterization of human and animal glycomes and their functions.
Hoeksema M, Laan L, Postma J, Cummings R, Winther M, Dijkstra C, Die I, Kooij G. Treatment with Trichuris suis soluble products during monocyte-to-macrophage differentiation reduces inflammatory responses through epigenetic remodeling.. FASEB J. 2016;30(8):2826–36. doi:10.1096/fj.201600343R
Helminths have strong immunoregulatory properties that may be exploited in treatment of chronic immune disorders, such as multiple sclerosis and inflammatory bowel disease. Essential players in the pathogenesis of these diseases are proinflammatory macrophages. We present evidence that helminths modulate the function and phenotype of these innate immune cells. We found that soluble products derived from the Trichuris suis (TsSP) significantly affect the differentiation of monocytes into macrophages and their subsequent polarization. TsSPs reduce the expression and production of inflammatory cytokines, including IL-6 and TNF, in human proinflammatory M1 macrophages. TsSPs induce a concomitant anti-inflammatory M2 signature, with increased IL-10 production. Furthermore, they suppress CHIT activity and enhance secretion of matrix metalloproteinase 9. Short-term triggering of monocytes with TsSPs early during monocyte-to-macrophage differentiation imprinted these phenotypic alterations, suggesting long-lasting epigenetic changes. The TsSP-induced effects in M1 macrophages were completely reversed by inhibiting histone deacetylases, which corresponded with decreased histone acetylation at the TNF and IL6 promoters. These results demonstrate that TsSPs have a potent and sustained immunomodulatory effect on human macrophage differentiation and polarization through epigenetic remodeling and provide new insights into the mechanisms by which helminths modulate human immune responses.-Hoeksema, M. A., Laan, L. C., Postma, J. J., Cummings, R. D., de Winther, M. P. J., Dijkstra, C. D., van Die, I., Kooij, G. Treatment with Trichuris suis soluble products during monocyte-to-macrophage differentiation reduces inflammatory responses through epigenetic remodeling.
Noll A, Yu Y, Lasanajak Y, Duska-McEwen G, Buck R, Smith D, Cummings R. Human DC-SIGN binds specific human milk glycans.. Biochem J. 2016;473(10):1343–53. doi:10.1042/BCJ20160046
Human milk glycans (HMGs) are prebiotics, pathogen receptor decoys and regulators of host physiology and immune responses. Mechanistically, human lectins (glycan-binding proteins, hGBP) expressed by dendritic cells (DCs) are of major interest, as these cells directly contact HMGs. To explore such interactions, we screened many C-type lectins and sialic acid-binding immunoglobulin-like lectins (Siglecs) expressed by DCs for glycan binding on microarrays presenting over 200 HMGs. Unexpectedly, DC-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) showed robust binding to many HMGs, whereas other C-type lectins failed to bind, and Siglec-5 and Siglec-9 showed weak binding to a few glycans. By contrast, most hGBP bound to multiple glycans on other microarrays lacking HMGs. An α-linked fucose residue was characteristic of HMGs bound by DC-SIGN. Binding of DC-SIGN to the simple HMGs 2'-fucosyl-lactose (2'-FL) and 3-fucosyl-lactose (3-FL) was confirmed by flow cytometry to beads conjugated with 2'-FL or 3-FL, as well as the ability of the free glycans to inhibit DC-SIGN binding. 2'-FL had an IC50 of ∼1 mM for DC-SIGN, which is within the physiological concentration of 2'-FL in human milk. These results demonstrate that DC-SIGN among the many hGBP expressed by DCs binds to α-fucosylated HMGs, and suggest that such interactions may be important in influencing immune responses in the developing infant.
Mickum M, Prasanphanich NS, Song X, Dorabawila N, Mandalasi M, Lasanajak Y, Luyai A, Secor E, Wilkins P, Die I, et al. Identification of Antigenic Glycans from Schistosoma mansoni by Using a Shotgun Egg Glycan Microarray.. Infect Immun. 2016;84(5):1371–86. doi:10.1128/IAI.01349-15
Infection of mammals by the parasitic helminth Schistosoma mansoni induces antibodies to glycan antigens in worms and eggs, but the differential nature of the immune response among infected mammals is poorly understood. To better define these responses, we used a shotgun glycomics approach in which N-glycans from schistosome egg glycoproteins were prepared, derivatized, separated, and used to generate an egg shotgun glycan microarray. This array was interrogated with sera from infected mice, rhesus monkeys, and humans and with glycan-binding proteins and antibodies to gather information about the structures of antigenic glycans, which also were analyzed by mass spectrometry. A major glycan antigen targeted by IgG from different infected species is the FLDNF epitope [Fucα3GalNAcβ4(Fucα3)GlcNAc-R], which is also recognized by the IgG monoclonal antibody F2D2. The FLDNF antigen is expressed by all life stages of the parasite in mammalian hosts, and F2D2 can kill schistosomula in vitro in a complement-dependent manner. Different antisera also recognized other glycan determinants, including core β-xylose and highly fucosylated glycans. Thus, the natural shotgun glycan microarray of schistosome eggs is useful in identifying antigenic glycans and in developing new anti-glycan reagents that may have diagnostic applications and contribute to developing new vaccines against schistosomiasis.
Ghasemi F, Hosseini ES, Song X, Gottfried D, Chamanzar M, Raeiszadeh M, Cummings R, Eftekhar A, Adibi A. Multiplexed detection of lectins using integrated glycan-coated microring resonators.. Biosens Bioelectron. 2016;80:682–90. doi:10.1016/j.bios.2016.01.051
We present the systematic design, fabrication, and characterization of a multiplexed label-free lab-on-a-chip biosensor using silicon nitride (SiN) microring resonators. Sensor design is addressed through a systematic approach that enables optimizing the sensor according to the specific noise characteristics of the setup. We find that an optimal 6 dB undercoupled resonator consumes 40% less power in our platform to achieve the same limit-of-detection as the conventional designs using critically coupled resonators that have the maximum light-matter interaction. We lay out an optimization framework that enables the generalization of our method for any type of optical resonator and noise characteristics. The device is fabricated using a CMOS-compatible process, and an efficient swabbing lift-off technique is introduced for the deposition of the protective oxide layer. This technique increases the lift-off quality and yield compared to common lift-off methods based on agitation. The complete sensor system, including microfluidic flow cell and surface functionalization with glycan receptors, is tested for the multiplexed detection of Aleuria Aurantia Lectin (AAL) and Sambucus Nigra Lectin (SNA). Further analysis shows that the sensor limit of detection is 2 × 10(-6) RIU for bulk refractive index, 1 pg/mm(2) for surface-adsorbed mass, and ∼ 10 pM for the glycan/lectins studied here.
Agravat S, Song X, Rojsajjakul T, Cummings R, Smith D. Computational approaches to define a human milk metaglycome.. Bioinformatics. 2016;32(10):1471–8. doi:10.1093/bioinformatics/btw048
MOTIVATION: The goal of deciphering the human glycome has been hindered by the lack of high-throughput sequencing methods for glycans. Although mass spectrometry (MS) is a key technology in glycan sequencing, MS alone provides limited information about the identification of monosaccharide constituents, their anomericity and their linkages. These features of individual, purified glycans can be partly identified using well-defined glycan-binding proteins, such as lectins and antibodies that recognize specific determinants within glycan structures. RESULTS: We present a novel computational approach to automate the sequencing of glycans using metadata-assisted glycan sequencing, which combines MS analyses with glycan structural information from glycan microarray technology. Success in this approach was aided by the generation of a 'virtual glycome' to represent all potential glycan structures that might exist within a metaglycomes based on a set of biosynthetic assumptions using known structural information. We exploited this approach to deduce the structures of soluble glycans within the human milk glycome by matching predicted structures based on experimental data against the virtual glycome. This represents the first meta-glycome to be defined using this method and we provide a publically available web-based application to aid in sequencing milk glycans. AVAILABILITY AND IMPLEMENTATION: http://glycomeseq.emory.edu CONTACT: sagravat@bidmc.harvard.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Agre P, Bertozzi C, Bissell M, Campbell K, Cummings R, Desai U, Estes M, Flotte T, Fogleman G, Gage F, et al. Training the next generation of biomedical investigators in glycosciences.. J Clin Invest. 2016;126(2):405–8. doi:10.1172/JCI85905
This position statement originated from a working group meeting convened on April 15, 2015, by the NHLBI and incorporates follow-up contributions by the participants as well as other thought leaders subsequently consulted, who together represent research fields relevant to all branches of the NIH. The group was deliberately composed not only of individuals with a current research emphasis in the glycosciences, but also of many experts from other fields, who evinced a strong interest in being involved in the discussions. The original goal was to discuss the value of creating centers of excellence for training the next generation of biomedical investigators in the glycosciences. A broader theme that emerged was the urgent need to bring the glycosciences back into the mainstream of biology by integrating relevant education into the curricula of medical, graduate, and postgraduate training programs, thus generating a critical sustainable workforce that can advance the much-needed translation of glycosciences into a more complete understanding of biology and the enhanced practice of medicine.
Brazil J, Sumagin R, Cummings R, Louis N, Parkos C. Targeting of Neutrophil Lewis X Blocks Transepithelial Migration and Increases Phagocytosis and Degranulation.. Am J Pathol. 2016;186(2):297–311. doi:10.1016/j.ajpath.2015.10.015
Polymorphonuclear leukocytes (PMNs) are innate immune cells whose principal function is to migrate from the blood to sites of inflammation, where they exert crucial anti-infectious and immunomodulatory effects. However, dysregulated migration of PMNs into mucosal epithelial tissues is characteristic of chronic inflammatory disorders, including inflammatory bowel disease. Carbohydrate-mediated binding interactions between PMN Lewis glycans and endothelial glycan-binding proteins are critical for initial migration of PMN out of the vasculature. However, the role of Lewis glycans during transepithelial migration (TEM) has not been well characterized. Herein, we show that antibody blockade of Lewis X (Le(x)) displayed as terminal glycan residues on the PMN surface blocks chemotaxis and TEM while enhancing PMN-adhesive interactions with intestinal epithelia. Unexpectedly, targeting of subterminal Le(x) residues within glycan chains had no effect on PMN migration or adhesive interactions. There was increased surface expression of Le(x) on PMN after TEM, and blockade of terminal Le(x) regulated post-migratory PMN functions, increasing PMN phagocytosis and the surface mobilization of azurophilic (CD63, myeloperoxidase, and neutrophil elastase) and specific (CD66b and lactoferrin) granule markers. These findings suggest that terminal Le(x) represents a potential target for regulating PMN trafficking and function in inflamed mucosa. Furthermore, given its abundant expression on migrating PMN, Le(x) may be a rational target for modulating inflammation in diseases where dysregulated PMN influx is associated with host tissue damage.