Publications

2012

Borgert A, Heimburg-Molinaro J, Song X, Lasanajak Y, Ju T, Liu M, Thompson P, Ragupathi G, Barany G, Smith D, et al. Deciphering structural elements of mucin glycoprotein recognition.. ACS Chem Biol. 2012;7(6):1031–9. doi:10.1021/cb300076s
Mucin glycoproteins present a complex structural landscape arising from the multiplicity of glycosylation patterns afforded by their numerous serine and threonine glycosylation sites, often in clusters, and with variations in respective glycans. To explore the structural complexities in such glycoconjugates, we used NMR to systematically analyze the conformational effects of glycosylation density within a cluster of sites. This allows correlation with molecular recognition through analysis of interactions between these and other glycopeptides, with antibodies, lectins, and sera, using a glycopeptide microarray. Selective antibody interactions with discrete conformational elements, reflecting aspects of the peptide and disposition of GalNAc residues, are observed. Our results help bridge the gap between conformational properties and molecular recognition of these molecules, with implications for their physiological roles. Features of the native mucin motifs impact their relative immunogenicity and are accurately encoded in the antibody binding site, with the conformational integrity being preserved in isolated glycopeptides, as reflected in the antibody binding profile to array components.
Stowell S, Winkler A, Maier C, Arthur M, Smith N, Girard-Pierce K, Cummings R, Zimring J, Hendrickson J. Initiation and regulation of complement during hemolytic transfusion reactions.. Clin Dev Immunol. 2012;2012:307093. doi:10.1155/2012/307093
Hemolytic transfusion reactions represent one of the most common causes of transfusion-related mortality. Although many factors influence hemolytic transfusion reactions, complement activation represents one of the most common features associated with fatality. In this paper we will focus on the role of complement in initiating and regulating hemolytic transfusion reactions and will discuss potential strategies aimed at mitigating or favorably modulating complement during incompatible red blood cell transfusions.

2011

Bradley K, Jones C, Tompkins M, Tripp R, Russell R, Gramer M, Heimburg-Molinaro J, Smith D, Cummings R, Steinhauer D. Comparison of the receptor binding properties of contemporary swine isolates and early human pandemic H1N1 isolates (Novel 2009 H1N1).. Virology. 2011;413(2):169–82. doi:10.1016/j.virol.2011.01.027
We have utilized glycan microarray technology to determine the receptor binding properties of early isolates from the recent 2009 H1N1 human pandemic (pdmH1N1), and compared them to North American swine influenza isolates from the same year, as well as past seasonal H1N1 human isolates. We showed that the pdmH1N1 strains, as well as the swine influenza isolates examined, bound almost exclusively to glycans with α2,6-linked sialic acid with little binding detected for α2,3-linked species. This is highlighted by pair-wise comparisons between compounds with identical glycan backbones, differing only in the chemistry of their terminal linkages. The overall similarities in receptor binding profiles displayed by pdmH1N1 strains and swine isolates indicate that little or no adaptation appeared to be necessary in the binding component of HA for transmission from pig to human, and subsequent human to human spread.
Sun Q, Ju T, Cummings R. The transmembrane domain of the molecular chaperone Cosmc directs its localization to the endoplasmic reticulum.. J Biol Chem. 2011;286(13):11529–42. doi:10.1074/jbc.M110.173591
The molecular basis for retention of integral membrane proteins in the endoplasmic reticulum (ER) is not well understood. We recently discovered a novel ER molecular chaperone termed Cosmc, which is essential for folding and normal activity of the Golgi enzyme T-synthase. Cosmc, a type II single-pass transmembrane protein, lacks any known ER retrieval/retention motifs. To explore specific ER localization determinants in Cosmc we generated a series of Cosmc mutants along with chimeras of Cosmc with a non-ER resident type II protein, the human transferrin receptor. Here we show that the 18 amino acid transmembrane domain (TMD) of Cosmc is essential for ER localization and confers ER retention to select chimeras. Moreover, mutations of a single Cys residue within the TMD of Cosmc prevent formation of disulfide-bonded dimers of Cosmc and eliminate ER retention. These studies reveal that Cosmc has a unique ER-retention motif within its TMD and provide new insights into the molecular mechanisms by which TMDs of resident ER proteins contribute to ER localization.
Ju T, Otto V, Cummings R. The Tn antigen-structural simplicity and biological complexity.. Angew Chem Int Ed Engl. 2011;50(8):1770–91. doi:10.1002/anie.201002313
Glycoproteins in animal cells contain a variety of glycan structures that are added co- and/or posttranslationally to proteins. Of over 20 different types of sugar-amino acid linkages known, the two major types are N-glycans (Asn-linked) and O-glycans (Ser/Thr-linked). An abnormal mucin-type O-glycan whose expression is associated with cancer and several human disorders is the Tn antigen. It has a relatively simple structure composed of N-acetyl-D-galactosamine with a glycosidic α linkage to serine/threonine residues in glycoproteins (GalNAcα1-O-Ser/Thr), and was one of the first glycoconjugates to be chemically synthesized. The Tn antigen is normally modified by a specific galactosyltransferase (T-synthase) in the Golgi apparatus of cells. Expression of active T-synthase is uniquely dependent on the molecular chaperone Cosmc, which is encoded by a gene on the X chromosome. Expression of the Tn antigen can arise as a consequence of mutations in the genes for T-synthase or Cosmc, or genes affecting other steps of O-glycosylation pathways. Because of the association of the Tn antigen with disease, there is much interest in the development of Tn-based vaccines and other therapeutic approaches based on Tn expression.
Cerliani J, Stowell S, Mascanfroni I, Arthur C, Cummings R, Rabinovich G. Expanding the universe of cytokines and pattern recognition receptors: galectins and glycans in innate immunity.. J Clin Immunol. 2011;31(1):10–21. doi:10.1007/s10875-010-9494-2
Effective immunity relies on the recognition of pathogens and tumors by innate immune cells through diverse pattern recognition receptors (PRRs) that lead to initiation of signaling processes and secretion of pro- and anti-inflammatory cytokines. Galectins, a family of endogenous lectins widely expressed in infected and neoplastic tissues have emerged as part of the portfolio of soluble mediators and pattern recognition receptors responsible for eliciting and controlling innate immunity. These highly conserved glycan-binding proteins can control immune cell processes through binding to specific glycan structures on pathogens and tumors or by acting intracellularly via modulation of selective signaling pathways. Recent findings demonstrate that various galectin family members influence the fate and physiology of different innate immune cells including polymorphonuclear neutrophils, mast cells, macrophages, and dendritic cells. Moreover, several pathogens may actually utilize galectins as a mechanism of host invasion. In this review, we aim to highlight and integrate recent discoveries that have led to our current understanding of the role of galectins in host-pathogen interactions and innate immunity. Challenges for the future will embrace the rational manipulation of galectin-glycan interactions to instruct and shape innate immunity during microbial infections, inflammation, and cancer.
Song X, Lasanajak Y, Xia B, Heimburg-Molinaro J, Rhea J, Ju H, Zhao C, Molinaro R, Cummings R, Smith D. Shotgun glycomics: a microarray strategy for functional glycomics.. Nat Methods. 2011;8(1):85–90. doi:10.1038/nmeth.1540
Major challenges of glycomics are to characterize a glycome and identify functional glycans as ligands for glycan-binding proteins (GBPs). To address these issues we developed a general strategy termed shotgun glycomics. We focus on glycosphingolipids (GSLs), a class of glycoconjugates that is challenging to study, recognized by toxins, antibodies and GBPs. We derivatized GSLs extracted from cells with a heterobifunctional fluorescent tag suitable for covalent immobilization. We separated fluorescent GSLs by multidimensional chromatography, quantified them and coupled them to glass slides to create GSL shotgun microarrays. Then we interrogated the microarrays with cholera toxin, antibodies and sera from individuals with Lyme disease to identify biologically relevant GSLs that we subsequently characterized by mass spectrometry. Shotgun glycomics incorporating GSLs and potentially glycoprotein-derived glycans is an approach for accessing the complex glycomes of animal cells and is a strategy for focusing structural analyses on functionally important glycans.
Ju T, Xia B, Aryal R, Wang W, Wang Y, Ding X, Mi R, He M, Cummings R. A novel fluorescent assay for T-synthase activity.. Glycobiology. 2011;21(3):352–62. doi:10.1093/glycob/cwq168
Loss of T-synthase (uridine diphosphate galactose:N-acetylgalactosaminyl-α1-Ser/Thr β3galactosyltransferase), a key enzyme required for the formation of mucin-type core 1 O-glycans, is observed in several human diseases, including cancer, Tn syndrome and IgA nephropathy, but current methods to assay the enzyme use radioactive substrates and complicated isolation of the product. Here we report the development of a novel fluorescent assay to measure its activity in a variety of tumor cell lines. Deficiencies in T-synthase activity correlate with mutations in the gene encoding the molecular chaperone Cosmc that is required for folding the T-synthase. This new high-throughput assay allows for facile screening of tumor specimens and other biological material for T-synthase activity and could be used diagnostically.
Song X, Heimburg-Molinaro J, Smith D, Cummings R. Derivatization of free natural glycans for incorporation onto glycan arrays: derivatizing glycans on the microscale for microarray and other applications (ms# CP-10-0194).. Curr Protoc Chem Biol. 2011;3(2):53–63. doi:10.1002/9780470559277.ch100194
Nature possesses an unlimited number and source of biologically-relevant natural glycans, many of which are too complicated to synthesize in the laboratory. To capitalize on the naturally-occurring plethora of glycans, we have developed a method to fluorescently tag the isolated free glycans, which maintains the closed-ring structure. After purification of the labeled glycans, they can be printed on a glass surface to create a natural glycan microarray, available for interrogation with potential glycan-binding proteins. The derivatization of these natural glycans has vastly expanded the number of glycans for functional studies.
Bradley K, Galloway S, Lasanajak Y, Song X, Heimburg-Molinaro J, Yu H, Chen X, Talekar G, Smith D, Cummings R, et al. Analysis of influenza virus hemagglutinin receptor binding mutants with limited receptor recognition properties and conditional replication characteristics.. J Virol. 2011;85(23):12387–98. doi:10.1128/JVI.05570-11
To examine the range of selective processes that potentially operate when poorly binding influenza viruses adapt to replicate more efficiently in alternative environments, we passaged a virus containing an attenuating mutation in the hemagglutinin (HA) receptor binding site in mice and characterized the resulting mutants with respect to the structural locations of mutations selected, the replication phenotypes of the viruses, and their binding properties on glycan microarrays. The initial attenuated virus had a tyrosine-to-phenylalanine mutation at HA1 position 98 (Y98F), located in the receptor binding pocket, but viruses that were selected contained second-site pseudoreversion mutations in various structural locations that revealed a range of molecular mechanisms for modulating receptor binding that go beyond the scope that is generally mapped using receptor specificity mutants. A comparison of virus titers in the mouse respiratory tract versus MDCK cells in culture showed that the mutants displayed distinctive replication properties depending on the system, but all were less attenuated in mice than the Y98F virus. An analysis of receptor binding properties confirmed that the initial Y98F virus bound poorly to several different species of erythrocytes, while all mutants reacquired various degrees of hemagglutination activity. Interestingly, both the Y98F virus and pseudoreversion mutants were shown to bind very inefficiently to standard glycan microarrays containing an abundance of binding substrates for most influenza viruses that have been characterized to date, provided by the Consortium for Functional Glycomics. The viruses were also examined on a recently developed microarray containing glycans terminating in sialic acid derivatives, and limited binding to a potentially interesting subset of glycans was revealed. The results are discussed with respect to mechanisms for HA-mediated receptor binding, as well as regarding the species of molecules that may act as receptors for influenza virus on host cell surfaces.