Cosmc is a molecular chaperone thought to be required for expression of active T-synthase, the only enzyme that galactosylates the Tn antigen (GalNAcalpha1-Ser/Thr-R) to form core 1 Galbeta1-3GalNAcalpha1-Ser/Thr (T antigen) during mucin type O-glycan biosynthesis. Here we show that ablation of the X-linked Cosmc gene in mice causes embryonic lethality and Tn antigen expression. Loss of Cosmc is associated with loss of T-synthase but not other enzymes required for glycoprotein biosynthesis, demonstrating that Cosmc is specific in vivo for the T-synthase. We generated genetically mosaic mice with a targeted Cosmc deletion and survivors exhibited abnormalities correlated with Tn antigen expression that are related to several human diseases.
The expression of ABO(H) blood group antigens causes deletion of cells that generate self-specific antibodies to these antigens but this deletion limits adaptive immunity toward pathogens bearing cognate blood group antigens. To explore potential defense mechanisms against such pathogens, given these limitations in adaptive immunity, we screened for innate proteins that could recognize human blood group antigens. Here we report that two innate immune lectins, galectin-4 (Gal-4) and Gal-8, which are expressed in the intestinal tract, recognize and kill human blood group antigen-expressing Escherichia coli while failing to alter the viability of other E. coli strains or other Gram-negative or Gram-positive organisms both in vitro and in vivo. The killing activity of both Gal-4 and Gal-8 is mediated by their C-terminal domains, occurs rapidly and independently of complement and is accompanied by disruption of membrane integrity. These results demonstrate that innate defense lectins can provide immunity against pathogens that express blood group-like antigens on their surface.
Galectin-1 (Gal-1) is important in immune function and muscle regeneration, but its expression and localization in adult tissues and primary leukocytes remain unclear. To address this, we generated a specific monoclonal antibody against Gal-1, termed alphahGal-1, and defined a sequential peptide epitope that it recognizes, which is preserved in human and porcine Gal-1, but not in murine Gal-1. Using alphahGal-1, we found that Gal-1 is expressed in a wide range of porcine tissues, including striated muscle, liver, lung, brain, kidney, spleen, and intestine. In most types of cells, Gal-1 exhibits diffuse cytosolic expression, but in cells within the splenic red pulp, Gal-1 showed both cytosolic and nuclear localization. Gal-1 was also expressed in arterial walls and exhibited prominent cytosolic and nuclear staining in cultured human endothelial cells. However, human peripheral leukocytes and promyelocytic HL60 cells lack detectable Gal-1 and also showed very low levels of Gal-1 mRNA. In striking contrast, Gal-1 exhibited an organized cytosolic staining pattern within striated muscle tissue of cardiac and skeletal muscle and colocalized with sarcomeric actin on I bands. These results provide insights into previously defined roles for Gal-1 in inflammation, immune regulation and muscle biology.
The T-synthase is the key beta 3-galactosyltransferase essential for biosynthesis of core 1 O-glycans (Gal beta 1-3GalNAc alpha 1-Ser/Thr) in animal cell glycoproteins. Here we describe the novel ability of an endoplasmic reticulum-localized molecular chaperone termed Cosmc to specifically interact with partly denatured T-synthase in vitro to cause partial restoration of activity. By contrast, a mutated form of Cosmc observed in patients with Tn syndrome has reduced chaperone function. The chaperone activity of Cosmc is specific, does not require ATP in vitro, and is effective toward T-synthase but not another beta-galactosyltransferase. Cosmc represents the first ER chaperone identified to be required for folding of a glycosyltransferase.
In this note, we demonstrate the utility of bifunctional fluorescent linkers to facilitate the construction of peptide microarrays with either an N- or a C-terminal alkylamine for directionally preferred peptide immobilization. Significantly, these small tags facilitate high-performance liquid chromatography (HPLC) profiling while limiting interference with antigen-antibody interactions after peptide immobilization. In a model peptide-antibody binding assay, a sequence-dependent orientation effect of antibody binding to a series of peptide ligands was demonstrated. This approach provides a strategy that can be applied to a variety of peptide microarray-based detection systems.
CD52 is a glycosylphosphatidylinositol (GPI)-anchored glycopeptide antigen found on sperm cells and human lymphocytes. Recent structural studies indicate that sperm-associated CD52 antigen carries both a complex type N-glycan and an O-glycan on the polypeptide backbone. To facilitate functional and immunological studies of distinct CD52 glycoforms, we report in this paper the first chemoenzymatic synthesis of homogeneous CD52 glycoforms carrying both N- and O-glycans. The synthetic strategy consists of two key steps: monosaccharide primers GlcNAc and GalNAc were first installed at the pre-determined N- and O-glycosylation sites by a facile solid-phase peptide synthesis, and then the N- and O-glycans were extended by respective enzymatic glycosylations. It was found that the endoglycosidase-catalyzed transglycosylation allowed efficient attachment of an intact N-glycan in a single step at the N-glycosylation site, while the recombinant human T-synthase could independently extend the O-linked GalNAc to form the core 1 O-glycan. This chemoenzymatic approach is highly convergent and permits easy construction of various homogeneous CD52 glycoforms from a common polypeptide precursor. In addition, the introduction of a latent thiol group in the form of protected cysteamine at the C-terminus of the CD52 glycoforms will enable site-specific conjugation to a carrier protein to provide immunogens for generating CD52 glycoform-specific antibodies for functional studies.
Interaction of SIRPα with its ligand, CD47, regulates leukocyte functions, including transmigration, phagocytosis, oxidative burst, and cytokine secretion. Recent progress has provided significant insights into the structural details of the distal IgV domain (D1) of SIRPα. However, the structural roles of proximal IgC domains (D2 and D3) have been largely unstudied. The high degree of conservation of D2 and D3 among members of the SIRP family as well as the propensity of known IgC domains to assemble in cis has led others to hypothesize that SIRPα forms higher order structures on the cell surface. Here we report that SIRPα forms noncovalently linked cis homodimers. Treatment of SIRPα-expressing cells with a membrane-impermeable cross-linker resulted in the formation of SDS-stable SIRPα dimers and oligomers. Biochemical analyses of soluble recombinant extracellular regions of SIRPα, including domain truncation mutants, revealed that each of the three extracellular immunoglobulin loops of SIRPα formed dimers in solution. Co-immunoprecipitation experiments using cells transfected with different affinity-tagged SIRPα molecules revealed that SIRPα forms cis dimers. Interestingly, in cells treated with tunicamycin, SIRPα dimerization but not CD47 binding was inhibited, suggesting that a SIRPα dimer is probably bivalent. Last, we demonstrate robust dimerization of SIRPa in adherent, stimulated human neutrophils. Collectively, these data are consistent with SIRPα being expressed on the cell surface as a functional cis-linked dimer.
Development of glycan microarray technologies have recently revealed many new features in the binding specificities of glycan-binding proteins (GBPs) including animal and plant lectins, antibodies, toxins, and pathogens, including viruses and bacteria. Printed glycan microarrays are very sensitive, robust, and require very small quantities of glycans and GBPs. However, glycan arrays have been limited mostly to chemoenzymatically synthesized oligosaccharides and N-glycans isolated from natural glycoproteins. O-Glycans and more complex glycoconjugates, such as glycopeptides or whole cells, are generally lacking from most types of glycan microarrays. Certain GBPs such as selectins, that have more complex binding specificity, require peptide components besides the glycan structure for high-affinity binding to the ligand. GBP binding assays on glycan microarrays will provide only partial information about the specificity and high-affinity ligands for those GBPs. Therefore, more "natural" glycoconjugate arrays are required to study more complex GBP-glycoconjugate interactions. We have utilized a simple fluorescence-based solid-phase assay on a microplate format to study GBP-glycoconjugate interactions. The method utilizes commercial streptavidin-coated microplates, where various biotinylated ligands, such as glycopeptides, oligosaccharides, and whole cells, can be immobilized at a defined density. The binding of GBPs to immobilized ligands can be studied using fluorescently labeled GBPs or cells, or bound GBPs can be detected using fluorescently labeled anti-GBP antibodies. Our approach utilizing biotinylated and fixed cells in a solid-phase assay is a versatile method to study binding of GBPs to natural cell-surface glycoconjugates. Not only mammalian cells, but also microorganisms can be biotinylated and fixed, and adhesion of fluorescently labeled GBPs and antibodies to immobilized cells can be studied using standard streptavidin-coated microplates. Here, we present examples of fluorescence-based solid-phase assays to study P- and L-selectin and galectin-1 binding to immobilized glycopeptides, oligosaccharides, and cells. It should be noted that with the availability of complex glycoconjugates containing available primary amine groups, such as semisynthetic glycopeptides described here, that these could also be printed on covalent microarrays for interrogation by GBPs.
Microarrays of defined glycans represent a high throughput approach to determining the specificity of lectins, or more generally glycan-binding proteins (GBPs). The utility of a glycan microarray is directly related to the number and variety of the glycans available on the printed surface for interrogation by GBPs. The Consortium for Functional Glycomics (CFG), funded by the National Institute of General Medical Sciences (NIGMS), has generated a glycan microarray available to the public as an investigator-driven resource, where hundreds of GBPs have been analyzed. Here we describe the methods generally used by the CFG to prepare glycan arrays and interrogate them with GBPs. We also describe our new approach to normalizing glycan microarray data derived from concentration-dependent analyses of GBP binding, and the application of this approach with the plant lectin Sambucus nigra agglutinin (SNA-I) and human galectin-8. The use of glycan microarrays with this approach readily generates a prediction of the glycan determinants required for high affinity binding by a GBP.
Neutrophils are the most abundant white blood cells in humans and play a vital role in several aspects of the immune response. Numerous reports have implicated neutrophil glycosylation as an important factor in mediating these interactions. We report here the application of high sensitivity glycomics methodologies, including matrix assisted laser desorption ionisation (MALDI-TOF) and MALDI-TOF/TOF analyses, to the structural analysis of N- and O-linked carbohydrates released from two samples of neutrophils, prepared by two separate and geographically remote laboratories. The data produced demonstrates that the cells display a diverse range of sialylated and fucosylated complex glycans, with a high level of similarity between the two preparations.