Publications

1999

Cummings, Nyame. Schistosome glysoconjugates.. Biochim Biophys Acta. 1999;1455(2-3):363–74.
Schistosomes are trematodes known as blood flukes that cause schistosomiasis in people and animals. The male and female worms reside mainly in intestinal veins where they lay eggs that result in a wide-ranging pathology in infected individuals. A growing body of evidence indicates that carbohydrates on glycoproteins, glycolipids and glycosaminoglycans synthesized by the parasite are targets of humoral immunity and may play a role in modulating host immune responses. Carbohydrate antigens may provide protective immunity against infection. In addition, recent evidence indicates that glycoconjugates and carbohydrate-binding proteins from the parasites and their hosts participate in egg adhesion and granuloma formation involved in disease pathology. This review will highlight our current knowledge of the glycoconjugates synthesized by the parasites and their immunological and biological properties. There is increasing anticipation in the field that information about the glycobiology of these parasites may lead to carbohydrate-based vaccines and diagnostics for the disease and perhaps new therapies for treating infected individuals.
Ramachandran, Nollert, Qiu, Liu, Cummings, Zhu, McEver. Tyrosine replacement in P-selectin glycoprotein ligand-1 affects distinct kinetic and mechanical properties of bonds with P- and L-selectin.. Proc Natl Acad Sci U S A. 1999;96(24):13771–6.
Selectins are adhesion molecules that initiate tethering and rolling of leukocytes on the vessel wall. Rolling requires rapid formation and breakage of selectin-ligand bonds that must have mechanical strength to resist premature dissociation by the forces applied in shear flow. P- and L-selectin bind to the N-terminal region of P-selectin glycoprotein ligand-1 (PSGL-1), a mucin on leukocytes. To define determinants on PSGL-1 that contribute to the kinetic and mechanical properties of bonds with selectins, we compared rolling of transfected preB cells expressing P- or L-selectin on transfected cell monolayers expressing wild-type PSGL-1 or PSGL-1 constructs with substitutions in targeted N-terminal residues. Rolling through P- or L-selectin required a Thr or Ser at a specific position on PSGL-1, the attachment site for an essential O-glycan, but required only one of three nearby Tyr residues, which are sites for Tyr-SO(3) formation. The adhesive strengths and numbers of cells rolling through P- or L-selectin were similar on wild-type PSGL-1 and on each of the three PSGL-1 constructs containing only a single Tyr. However, the cells rolled more irregularly on the single-Tyr forms of PSGL-1. Analysis of the lifetimes of transient tethers on limiting densities of PSGL-1 revealed that L-selectin dissociated faster from single-Tyr than wild-type PSGL-1 at all shears examined. In sharp contrast, P-selectin dissociated faster from single-Tyr than wild-type PSGL-1 at higher shear but not at lower shear. Thus, tyrosine replacements in PSGL-1 affect distinct kinetic and mechanical properties of bonds with P- and L-selectin.
Nyame, Leppänen, DeBose-Boyd, Cummings. Mice infected with Schistosoma mansoni generate antibodies to LacdiNAc (GalNAc beta 1-->4GlcNAc) determinants.. Glycobiology. 1999;9(10):1029–35.
Schistosoma mansoni is a parasitic trematode infecting humans and animals. We reported previously that adult S. mansoni synthesizes complex type biantennary N-glycans bearing the terminal sequence GalNAc beta 1-->4GlcNAc-R (lacdiNAc or LDN). We now report that mice infected with S. mansoni generate antibodies to LDN, as assessed by ELISA using a synthetic neoglycoconjugate containing LDN sequences. Sera of infected mice, but not uninfected mice, contained primarily IgM and low levels of IgG toward LDN. Interestingly, these antibodies also recognize bovine milk glycoproteins, which are known to express LDN sequences. The anti-LDN in sera of infected mice were affinity purified on immobilized bovine milk glycoproteins and shown to specifically bind LDN. An IgM monoclonal antibody (SMLDN1.1) was derived from the spleens of S. mansoni infected mice and shown to specifically bind LDN determinants. Immunoblots with affinity purified anti-LDN and SMLDN1.1 demonstrate that LDN sequences occur primarily on N-glycans of numerous glycoproteins of adult S. mansoni. LDN sequences are also expressed in many glycoproteins from S. japonicum and S. haematobium. The availability of antibody to LDN determinants should aid in defining the roles of these glycans in helminth and vertebrate biology.
Leppänen, Mehta, Ouyang, Ju, Helin, Moore, Die, Canfield, McEver, Cummings. A novel glycosulfopeptide binds to P-selectin and inhibits leukocyte adhesion to P-selectin.. J Biol Chem. 1999;274(35):24838–48.
P-selectin glycoprotein ligand-1 (PSGL-1) is a dimeric membrane mucin on leukocytes that binds selectins. The molecular features of PSGL-1 that determine this high affinity binding are unclear. Here we demonstrate the in vitro synthesis of a novel glycosulfopeptide (GSP-6) modeled after the extreme N terminus of PSGL-1, which has been predicted to be important for P-selectin binding. GSP-6 contains three tyrosine sulfate (TyrSO(3)) residues and a monosialylated, core 2-based O-glycan with a sialyl Lewis x (C2-O-sLe(x)) motif at a specific Thr residue. GSP-6 binds tightly to immobilized P-selectin, whereas glycopeptides lacking either TyrSO(3) or C2-O-sLe(x) do not detectably bind. Remarkably, an isomeric glycosulfopeptide to GSP-6, termed GSP-6', which contains sLe(x) on an extended core 1-based O-glycan, does not bind immobilized P-selectin. Equilibrium gel filtration analysis revealed that GSP-6 binds to soluble P-selectin with a K(d) of approximately 350 nM. GSP-6 (5 microM) substantially inhibits neutrophil adhesion to P-selectin in vitro, whereas free sLe(x) (5 mM) only slightly inhibits adhesion. In contrast to the inherent heterogeneity of post-translational modifications of recombinant proteins, glycosulfopeptides permit the placement of sulfate groups and glycans of precise structure at defined positions on a polypeptide. This approach should expedite the probing of structure-function relationships in sulfated and glycosylated proteins, and may facilitate development of novel drugs to treat inflammatory diseases involving P-selectin-mediated leukocyte adhesion.
Cummings. Structure and function of the selectin ligand PSGL-1.. Braz J Med Biol Res. 1999;32(5):519–28.
P-selectin glycoprotein ligand-1 (PSGL-1) is a dimeric mucin-like 120-kDa glycoprotein on leukocyte surfaces that binds to P- and L-selectin and promotes cell adhesion in the inflammatory response. The extreme amino terminal extracellular domain of PSGL-1 is critical for these interactions, based on site-directed mutagenesis, blocking monoclonal antibodies, and biochemical analyses. The current hypothesis is that for high affinity interactions with P-selectin, PSGL-1 must contain O-glycans with a core-2 branched motif containing the sialyl Lewis x antigen (NeuAc alpha 2-->3Gal beta 1-->4[Fuc alpha 1-->3]GlcNAc beta 1-->R). In addition, high affinity interactions require the co-expression of tyrosine sulfate on tyrosine residues near the critical O-glycan structure. This review addresses the biochemical evidence for this hypothesis and the evidence that PSGL-1 is an important in vivo ligand for cell adhesion.

1998

Glycoproteins from the ruminant helminthic parasite Haemonchus contortus react with Lotus tetragonolobus agglutinin and Wisteria floribunda agglutinin, which are plant lectins that recognize alpha1,3-fucosylated GlcNAc and terminal beta-GalNAc residues, respectively. However, parasite glycoconjugates are not reactive with Ricinus communis agglutinin, which binds to terminal beta-Gal, and the glycoconjugates lack the Lewis x (Le(x)) antigen or other related fucose-containing antigens, such as sialylated Le(x), Le(a), Le(b) Le(y), or H-type 1. Direct assays of parasite extracts demonstrate the presence of an alpha1,3-fucosyltransferase (alpha1,3FT) and beta1,4-N-acetylgalactosaminyltransferase (beta1,4GalNAcT), but not beta1,4-galactosyltransferase. The H. contortus alpha1,3FT can fucosylate GlcNAc residues in both lacto-N-neotetraose (LNnT) Galalpha1-->4GlcNAcbeta1-->3Galbeta1-->4Glc to form lacto-N-fucopentaose III Galbeta1-->4[Fuca1-->3]GlcNAc beta1-->3Galbeta1-4GIc, which contains the Le(x) antigen, and the acceptor lacdiNAc (LDN) GalNAcbeta1-->4GlcNAc to form GalNAc beta1-->4[Fualpha1-->3]GlcNAc. The alpha1,3FT activity towards LNnT is dependent on time, protein, and GDP-Fuc concentration with a Km 50 microM and a Vmax of 10.8 nmol-mg(-1) h(-1). The enzyme is unusually resistant to inhibition by the sulfhydryl-modifying reagent N-ethylmaleimide. The alpha1,3FT acts best with type-2 glycan acceptors (Galbeta1-->4GlcNAcbeta1-R) and can use both sialylated and non-sialylated acceptors. Thus, although in vitro the H. contortus alpha1,3FT can synthesize the Le(x) antigen, in vivo the enzyme may instead participate in synthesis of fucosylated LDN or related structures, as found in other helminths.
Mehta, Cummings, McEver. Affinity and kinetic analysis of P-selectin binding to P-selectin glycoprotein ligand-1.. J Biol Chem. 1998;273(49):32506–13.
Leukocytes use the cell-surface mucin P-selectin glycoprotein ligand-1 (PSGL-1) to tether to and roll on P-selectin on activated endothelial cells and platelets. By using surface plasmon resonance, we measured the affinity and kinetics of binding of soluble monomeric human P-selectin to immobilized PSGL-1 from human neutrophils. Binding was specific, as documented by its Ca2+-dependence, its inhibition by specific monoclonal antibodies to P-selectin and PSGL-1, and its abrogation by treating PSGL-1 with sialidase. Similar binding was observed for soluble P-selectin that contained the lectin and epidermal growth factor domains plus all nine consensus repeats, and for a soluble construct that contained only the lectin and epidermal growth factor domains. Soluble P-selectin bound saturably to a single class of sites on PSGL-1 with a dissociation constant (Kd) of 320 +/- 20 nM. The measured koff was 1.4 +/- 0.1 s-1, and the calculated kon was 4.4 x 10(6) M-1 s-1. We conclude that monomeric P-selectin binds to PSGL-1 with fast association and dissociation rates and relatively high affinity. These features may be important for efficient tethering and rolling of leukocytes at physiologic densities of PSGL-1 and P-selectin.
We report on the identification, molecular cloning, and characterization of an alpha1,3 fucosyltransferase (alpha1,3FT) expressed by the nematode, Caenorhabditis elegans . Although C. elegans glycoconjugates do not express the Lewis x antigen Galbeta1-->4[Fucalpha1-->3]GlcNAcbeta-->R, detergent extracts of adult C.elegans contain an alpha1,3FT that can fucosylate both nonsialylated and sialylated acceptor glycans to generate the Lexand sialyl Lexantigens, as well as the lacdiNAc-containing acceptor GalNAcbeta1-->4GlcNAcbeta1-->R to generate GalNAcbeta1-->4 [Fucalpha1-->3]GlcNAcbeta1-->R. A search of the C.elegans genome database revealed the existence of a gene with 20-23% overall identity to all five cloned human alpha1,3FTs. The putative cDNA for the C.elegans alpha1,3FT (CEFT-1) was amplified by PCR from a cDNA lambdaZAP library, cloned, and sequenced. COS7 cells transiently transfected with cDNA encoding CEFT-1 express the Lex, but not sLexantigen. The CEFT-1 in the transfected cell extracts can synthesize Lex, but not sialyl Lex, using exogenous acceptors. A second fucosyltransferase activity was detected in extracts of C. elegans that transfers Fuc in alpha1,2 linkage to Gal specifically on type-1 chains. The discovery of alpha-fucosyltransferases in C. elegans opens the possibility of using this well-characterized nematode as a model system for studying the role of fucosylated glycans in the development and survival of C.elegans and possibly other helminths.
Adults of the human parasitic trematode Schistosoma mansoni, which causes hepatosplenic/intestinal complications in humans, synthesize glycoconjugates containing the Lewis x (Lex) Galbeta1-->4(Fucalpha1-->3)GlcNAcbeta1-->R, but not sialyl Lewis x (sLex), antigen. We now report on our analyses of Lexand sLexexpression in S.haematobium and S.japonicum, which are two other major species of human schistosomes that cause disease, and the possible autoimmunity to these antigens in infected individuals. Antigen expression was evaluated by both ELISA and Western blot analyses of detergent extracts of parasites using monoclonal antibodies. Several high molecular weight glycoproteins in both S. haematobium and S. japonicum contain the Lexantigen, but no sialyl Lexantigen was detected. In addition, sera from humans and rodents infected with S.haematobium and S.japonicum contain antibodies reactive with Lex. These results led us to investigate whether Lexantigens are expressed in other helminths, including the parasitic trematode Fasciola hepatica , the parasitic nematode Dirofilaria immitis (dog heartworm), the ruminant nematode Haemonchus contortus , and the free-living nematode Caenorhabditis elegans . Neither Lexnor sialyl-Lexis detectable in these other helminths. Furthermore, none of the helminths, including schistosomes, express Lea, Leb, Ley, or the H-type 1 antigen. However, several glycoproteins from all helminths analyzed are bound by Lotus tetragonolobus agglutinin , which binds Fucalpha1-->3GlcNAc, and Wisteria floribunda agglutinin, which binds GalNAcbeta1-->4GlcNAc (lacdiNAc or LDN). Thus, schistosomes may be unique among helminths in expressing the Lexantigen, whereas many different helminths may express alpha1,3-fucosylated glycans and the LDN motif.
Liu, Ramachandran, Kang, Kishimoto, Cummings, McEver. Identification of N-terminal residues on P-selectin glycoprotein ligand-1 required for binding to P-selectin.. J Biol Chem. 1998;273(12):7078–87.
The major high affinity ligand for P-selectin on human leukocytes is P-selectin glycoprotein ligand-1 (PSGL-1). To bind P-selectin, PSGL-1 must be modified with tyrosine sulfate and sialylated, fucosylated, core-2 O-glycan(s). The required sites for these modifications on full-length PSGL-1 have not been defined. The N-terminal region of mature PSGL-1, which begins at residue 42, includes tyrosines at residues 46, 48, and 51, plus potential sites for Thr-linked O-glycans at residues 44 and 57. We expressed full-length PSGL-1 constructs with substitutions of these residues in transfected Chinese hamster ovary cells. The cells were co-transfected with cDNAs for the glycosyltransferases required to construct sialylated and fucosylated, core-2 O-glycans on PSGL-1. The transfected cells were assayed for their abilities to bind fluid-phase P-selectin and to support rolling adhesion of pre-B cells expressing P-selectin under hydrodynamic flow. In both assays, substitution of Thr-57 with alanine eliminated binding of PSGL-1 to P-selectin without affecting sulfation of PSGL-1, whereas substitution with serine, to which an O-glycan might also be attached, did not affect binding. Binding was not altered by substituting alanines for the two amino acids on either side of Thr-57, or by substituting alanine for Thr-44. Substitution of all three tyrosines with phenylalanines markedly reduced sulfation and prevented binding to P-selectin. However, all constructs in which one or two tyrosines were replaced with phenylalanines bound P-selectin. These results suggest that full-length PSGL-1 requires an O-glycan attached to Thr-57 plus sulfation of any one of its three clustered tyrosines to bind P-selectin.