N-glycosylation of mannose receptor (CD206) regulates glycan binding by C-type lectin domains.

Stavenhagen K, Mehta AY, Laan L, Gao C, Heimburg-Molinaro J, van Die I, Cummings RD. N-glycosylation of mannose receptor (CD206) regulates glycan binding by C-type lectin domains.. The Journal of biological chemistry. 2022;298(12):102591.

Abstract

The macrophage mannose receptor (MR, CD206) is a transmembrane endocytic lectin receptor, expressed in selected immune and endothelial cells, and is involved in immunity and maintaining homeostasis. Eight of the ten extracellular domains of the MR are C-type lectin domains (CTLDs) which mediate the binding of mannose, fucose, and GlcNAc in a calcium-dependent manner. Previous studies indicated that self-glycosylation of MR regulates its glycan binding. To further explore this structure-function relationship, we studied herein a recombinant version of mouse MR CTLD4-7 fused to human Fc-portion of IgG (MR-Fc). The construct was expressed in different glycosylation-mutant cell lines to study the influence of differential glycosylation on receptor glycan-binding properties. We conducted site-specific N- and O-glycosylation analysis and glycosylation site characterization using mass spectrometry by which several novel O-glycosylation sites were identified in mouse MR and confirmed in human full-length MR. This information guided experiments evaluating the receptor functionality by glycan microarray analysis in combination with glycan-modifying enzymes. Treatment of active MR-Fc with combinations of exoglycosidases, including neuraminidase and galactosidases, resulted in the loss of trans-binding (binding of MR CTLDs to non-MR glycans), due to unmasking of terminal, nonreducing GlcNAc in N-glycans of the MR CTLDs. Regalactosylation of N-glycans rescues mannose binding by MR-Fc. Our results indicate that glycans within the MR CTLDs act as a regulatory switch by masking and unmasking self-ligands, including terminal, nonreducing GlcNAc in N-glycans, which could control MR activity in a tissue- and cell-specific manner or which potentially affect bacterial pathogenesis in an immunomodulatory fashion.

Last updated on 11/02/2023
PubMed