Publications

2012

The interaction of the endoplasmic reticulum molecular chaperone Cosmc with its specific client T-synthase (Core 1 β1-3-galactosyltransferase) is required for folding of the enzyme and eventual movement of the T-synthase to the Golgi, but the mechanism of interaction is unclear. Here we show that the lumenal domain of recombinant Cosmc directly interacts specifically in either free form or covalently bound to solid supports with denatured T-synthase but not with the active dimeric form of the enzyme. This leads to formation of a relatively stable complex of Cosmc and denatured T-synthase accompanied by formation of reactivated enzyme in an ATP-independent fashion that is not regulated by redox, calcium, pH, or intermolecular disulfide bond formation. The partly refolded and active T-synthase remains tightly bound noncovalently to Cosmc. Dissociation of T-synthase from the complex is promoted by further interactions of the complex with free forms of either native or non-native T-synthase. Taken together, these results demonstrate a novel mechanism in which Cosmc cycles to bind non-native T-synthase, leading to enzyme activity and release in a client-driven process.
Padler-Karavani V, Song X, Yu H, Hurtado-Ziola N, Huang S, Muthana S, Chokhawala H, Cheng J, Verhagen A, Langereis M, et al. Cross-comparison of protein recognition of sialic acid diversity on two novel sialoglycan microarrays.. J Biol Chem. 2012;287(27):22593–608. doi:10.1074/jbc.M112.359323
DNA and protein arrays are commonly accepted as powerful exploratory tools in research. This has mainly been achieved by the establishment of proper guidelines for quality control, allowing cross-comparison between different array platforms. As a natural extension, glycan microarrays were subsequently developed, and recent advances using such arrays have greatly enhanced our understanding of protein-glycan recognition in nature. However, although it is assumed that biologically significant protein-glycan binding is robustly detected by glycan microarrays, there are wide variations in the methods used to produce, present, couple, and detect glycans, and systematic cross-comparisons are lacking. We address these issues by comparing two arrays that together represent the marked diversity of sialic acid modifications, linkages, and underlying glycans in nature, including some identical motifs. We compare and contrast binding interactions with various known and novel plant, vertebrate, and viral sialic acid-recognizing proteins and present a technical advance for assessing specificity using mild periodate oxidation of the sialic acid chain. These data demonstrate both the diversity of sialic acids and the analytical power of glycan arrays, showing that different presentations in different formats provide useful and complementary interpretations of glycan-binding protein specificity. They also highlight important challenges and questions for the future of glycan array technology and suggest that glycan arrays with similar glycan structures cannot be simply assumed to give similar results.
Song X, Smith D, Cummings R. Nonenzymatic release of free reducing glycans from glycosphingolipids.. Anal Biochem. 2012;429(1):82–7. doi:10.1016/j.ab.2012.06.029
A major limitation in studying the structures and functions of glycans in glycosphingolipids is the difficulty in releasing free glycans for analysis and derivatization. Here we show that reducing glycans can be released nonenzymatically from glycosphingolipids after a brief treatment with ozone followed by heating in neutral aqueous buffer (pHs 6.0-8.0). The released free reducing glycans are then available for glycomic analyses, including fluorescent labeling, permethylation, and mass spectrometry. This procedure is simple and highly efficient, with no base-catalyzed "peeling" reaction by-products observed.
Yu Y, Mishra S, Song X, Lasanajak Y, Bradley K, Tappert M, Air G, Steinhauer D, Halder S, Cotmore S, et al. Functional glycomic analysis of human milk glycans reveals the presence of virus receptors and embryonic stem cell biomarkers.. J Biol Chem. 2012;287(53):44784–99. doi:10.1074/jbc.M112.425819
Human milk contains a large diversity of free glycans beyond lactose, but their functions are not well understood. To explore their functional recognition, here we describe a shotgun glycan microarray prepared from isolated human milk glycans (HMGs), and our studies on their recognition by viruses, antibodies, and glycan-binding proteins (GBPs), including lectins. The total neutral and sialylated HMGs were derivatized with a bifunctional fluorescent tag, separated by multidimensional HPLC, and archived in a tagged glycan library, which was then used to print a shotgun glycan microarray (SGM). This SGM was first interrogated with well defined GBPs and antibodies. These data demonstrated both the utility of the array and provided preliminary structural information (metadata) about this complex glycome. Anti-TRA-1 antibodies that recognize human pluripotent stem cells specifically recognized several HMGs that were then further structurally defined as novel epitopes for these antibodies. Human influenza viruses and Parvovirus Minute Viruses of Mice also specifically recognized several HMGs. For glycan sequencing, we used a novel approach termed metadata-assisted glycan sequencing (MAGS), in which we combine information from analyses of glycans by mass spectrometry with glycan interactions with defined GBPs and antibodies before and after exoglycosidase treatments on the microarray. Together, these results provide novel insights into diverse recognition functions of HMGs and show the utility of the SGM approach and MAGS as resources for defining novel glycan recognition by GBPs, antibodies, and pathogens.
Mi R, Song L, Wang Y, Ding X, Zeng J, Lehoux S, Aryal R, Wang J, Crew V, Die I, et al. Epigenetic silencing of the chaperone Cosmc in human leukocytes expressing tn antigen.. J Biol Chem. 2012;287(49):41523–33. doi:10.1074/jbc.M112.371989
Cosmc is the specific molecular chaperone in the endoplasmic reticulum for T-synthase, a Golgi β3-galactosyltransferase that generates the core 1 O-glycan, Galβ1-3GalNAcα-Ser/Thr, in glycoproteins. Dysfunctional Cosmc results in the formation of inactive T-synthase and consequent expression of the Tn antigen (GalNAcα1-Ser/Thr), which is associated with several human diseases. However, the molecular regulation of expression of Cosmc, which is encoded by a single gene on Xq24, is poorly understood. Here we show that epigenetic silencing of Cosmc through hypermethylation of its promoter leads to loss of Cosmc transcripts in Tn4 cells, an immortalized B cell line from a male patient with a Tn-syndrome-like phenotype. These cells lack T-synthase activity and express the Tn antigen. Treatment of cells with 5-aza-2'-deoxycytidine causes restoration of Cosmc transcripts, restores T-synthase activity, and reduces Tn antigen expression. Bisulfite sequencing shows that CG dinucleotides in the Cosmc core promoter are hypermethylated. Interestingly, several other X-linked genes associated with glycosylation are not silenced in Tn4 cells, and we observed no correlation of a particular DNA methyltransferase to aberrant methylation of Cosmc in these cells. Thus, hypermethylation of the Cosmc promoter in Tn4 cells is relatively specific. Epigenetic silencing of Cosmc provides another mechanism underlying the abnormal expression of the Tn antigen, which may be important in understanding aberrant Tn antigen expression in human diseases, including IgA nephropathy and cancer.
Wang Y, Jobe S, Ding X, Choo H, Archer D, Mi R, Ju T, Cummings R. Platelet biogenesis and functions require correct protein O-glycosylation.. Proc Natl Acad Sci U S A. 2012;109(40):16143–8. doi:10.1073/pnas.1208253109
Platelets express a variety of membrane and secreted glycoproteins, but the importance of glycosylation to platelet functions is poorly understood. To explore the importance of O-glycosylation, we generated mice with a targeted deletion of Cosmc in murine endothelial/hematopoietic cells (EHC) (EHC Cosmc(-/y)). X-linked Cosmc encodes an essential chaperone that regulates protein O-glycosylation. This targeted mutation resulted in lethal perinatal hemorrhage in the majority of mice, and the surviving mice displayed severely prolonged tail-bleeding times and macrothrombocytopenia. EHC Cosmc(-/y) platelets exhibited a marked decrease in GPIb-IX-V function and agonist-mediated integrin αIIbβ3 activation, associated with loss of interactions with von Willebrand factor and fibrinogen, respectively. Significantly, three O-glycosylated glycoproteins, GPIbα, αIIb, and GPVI normally on platelet surfaces that play essential roles in platelet functions, were partially proteolyzed in EHC Cosmc(-/y) platelets. These results demonstrate that extended O-glycans are required for normal biogenesis of the platelets as well as the expression and functions of their essential glycoproteins, and that variations in O-glycosylation may contribute to altered hemostasis.
Su H, Carter C, Fröhlich O, Cummings R, Chen G. Glycoforms of UT-A3 urea transporter with poly-N-acetyllactosamine glycosylation have enhanced transport activity.. Am J Physiol Renal Physiol. 2012;303(2):F201–8. doi:10.1152/ajprenal.00140.2012
Urea transporters UT-A1 and UT-A3 are both expressed in the kidney inner medulla. However, the function of UT-A3 remains unclear. Here, we found that UT-A3, which comprises only the NH(2)-terminal half of UT-A1, has a higher urea transport activity than UT-A1 in the oocyte and that this difference was associated with differences in N-glycosylation. Heterologously expressed UT-A3 is fully glycosylated with two glycoforms of 65 and 45 kDa. By contrast, UT-A1 expressed in HEK293 cells and oocytes exhibits only a 97-kDa glycosylation form. We further found that N-glycans of UT-A3 contain a large amount of poly-N-acetyllactosamine. This highly glycosylated UT-A3 is more stable and is enriched in lipid raft domains on the cell membrane. Kifunensine, an inhibitor of α-mannosidase that inhibits N-glycan processing beyond high-mannose-type N-glycans, significantly reduced UT-A3 urea transport activity. We then examined the native UT-A1 and UT-A3 glycosylation states from kidney inner medulla and found the ratio of 65 to 45 kDa in UT-A3 is higher than that of 117 to 97 kDa in UT-A1. The highly stable expression of highly glycosylated UT-A3 on the cell membrane in kidney inner medulla suggests that UT-A3 may have an important function in urea reabsorption.
Miwa H, Song Y, Alvarez R, Cummings R, Stanley P. The bisecting GlcNAc in cell growth control and tumor progression.. Glycoconj J. 2012;29(8-9):609–18. doi:10.1007/s10719-012-9373-6
The bisecting GlcNAc is transferred to the core mannose residue of complex or hybrid N-glycans on glycoproteins by the β1,4-N-acetylglucosaminyltransferase III (GlcNAcT-III) or MGAT3. The addition of the bisecting GlcNAc confers unique lectin recognition properties to N-glycans. Thus, LEC10 gain-of-function Chinese hamster ovary (CHO) cells selected for the acquisition of ricin resistance, carry N-glycans with a bisecting GlcNAc, which enhances the binding of the erythroagglutinin E-PHA, but reduces the binding of ricin and galectins-1, -3 and -8. The altered interaction with galactose-binding lectins suggests that the bisecting GlcNAc affects N-glycan conformation. LEC10 mutants expressing polyoma middle T antigen (PyMT) exhibit reduced growth factor signaling. Furthermore, PyMT-induced mammary tumors lacking MGAT3, progress more rapidly than tumors with the bisecting GlcNAc on N-glycans of cell surface glycoproteins. In recent years, evidence for a new paradigm of cell growth control has emerged involving regulation of cell surface residency of growth factor and cytokine receptors via interactions and cross-linking of their branched N-glycans with a lattice of galectin(s). Specific cross-linking of glycoprotein receptors in the lattice regulates their endocytosis, leading to effects on growth factor-induced signaling. This review will describe evidence that the bisecting GlcNAc of N-glycans regulates cellular signaling and tumor progression, apparently through modulating N-glycan/galectin interactions.
Borgert A, Heimburg-Molinaro J, Song X, Lasanajak Y, Ju T, Liu M, Thompson P, Ragupathi G, Barany G, Smith D, et al. Deciphering structural elements of mucin glycoprotein recognition.. ACS Chem Biol. 2012;7(6):1031–9. doi:10.1021/cb300076s
Mucin glycoproteins present a complex structural landscape arising from the multiplicity of glycosylation patterns afforded by their numerous serine and threonine glycosylation sites, often in clusters, and with variations in respective glycans. To explore the structural complexities in such glycoconjugates, we used NMR to systematically analyze the conformational effects of glycosylation density within a cluster of sites. This allows correlation with molecular recognition through analysis of interactions between these and other glycopeptides, with antibodies, lectins, and sera, using a glycopeptide microarray. Selective antibody interactions with discrete conformational elements, reflecting aspects of the peptide and disposition of GalNAc residues, are observed. Our results help bridge the gap between conformational properties and molecular recognition of these molecules, with implications for their physiological roles. Features of the native mucin motifs impact their relative immunogenicity and are accurately encoded in the antibody binding site, with the conformational integrity being preserved in isolated glycopeptides, as reflected in the antibody binding profile to array components.