By: Richard D. Cummings
Among the 900-1,400 genes on the human X chromosome (1, 2)[1], there are many genes important in the metabolism of glycomolecules, including glycosyltransferases, glycohydrolases, transporters, and chaperones. Mutations in several of these X-linked genes, either heritable or acquired (de novo), are associated with Congenital Disorders of Glycosylation (CDG) (3) and Lysosomal Storage Disorders (LSDs) (4). A list of all known diseases associated with defects on the X chromosome may be found at https://www.ncbi.nlm.nih.gov/gdv/browser/genome/?id=GCF_000001405.40&chr=X.
A list of the glyco-related genes is provided below. This list is not comprehensive but provides an overview of many glycosylation-related disorders arising from mutations in genes on the X-chromosome.
Transferases –
- UDP-GlcNAc: polypeptide O-β-N-acetylglucosaminyltransferase (OGT) (Xq13.1) generates O-GlcNAc modifications on intracellular glycoproteins (5, 6). Heritable mutations in OGT are associated with OGT-CDG (7-11) and patients with this often present with intellectual disability (ID) syndrome termed OGT congenital disorder of glycosylation (OGT-CDG) (12, 13). Consequences of mutation in OGT can be multiple and severe, as O-GlcNAcylation affects many pathways of cell signaling and differentiation.
- Phosphatidylinositol glycan anchor biosynthesis class A (PIGA) (Xp22.2) initiates GPI-anchor biosynthesis by addition of GlcNAc to phosphatidylinositol (14). Heritable X-linked mutations in PIGA result in PIGA-CDG (15, 16). This defect is also termed multiple congenital anomalies-hypotonia seizures syndrome 2. However, mutations in PIGA can be acquired (de novo), whereby mutations in hematopoietic stems cells create cell lineages in a mosaic presentation, and patients present with Paroxysmal Nocturnal Hemoglobinuria (PNH) disease (17-19).
- UDP-N-acetylglucosaminyltransferase subunit (ALG13) transfers GlcNAc from UDP-GlcNAc to Dol-P-P-GlcNAc to synthesize Dol-P-P-GlcNAc2 (Xq23) (20, 21). Heritable mutations in this gene are associated with ALG13-CDG (22).
- Heparin sulfate 6-O-sulfotransferase 2 (HS6ST2) (Xq26.2) adds sulfate to glucuronate residues at the 6-O position in heparan sulfate (23). Heritable mutations in this gene are associated with HS6ST2-CDG (24).
- Carbohydrate sulfotransferase 7 (CHST7) (Xp11.3) catalyzes the sulfation of 6-hydroxyl group of GalNAc in chondroitin (25).
- Glycogenin 2 (GYG2) (Xp22.33) self-initiates glycogen production by glucosylation of internal tyrosine residues via UDP-Glc (26). Hemizygous mutations in GYG2 have been associated with Leigh syndrome (27), but individuals with a deletion (114-kb deletion) of a portion of the X-chromosome in which this gene is located have also been identified (28).
Glycosidase –
- α-Galactosidase 1 (GLA) (Xq22.1) hydrolyses the α-linked galactose on glycolipids (29). Heritable mutations in this gene are associated with Fabry disease (30), an LSD associated with the accumulation of globotriaosylceramide in lysosomes.
Transporters –
- UDP-galactose transporter known as solute carrier family 35 member A2 (SLC35A2) (Xp11.23) transports UDP-Gal into the Golgi apparatus (31). Heritable mutations in this gene are associated with SLC35A2-CDG (32).
- ATPase H+ transporting accessory protein 1 (ATP6AP1) (Xp28) is important in the folding and assembly of V-ATPase, that helps to maintain Golgi pH homeostasis (33, 34). Hemizygous missense mutations in ATP6AP1 are associated with hepatopathy, cognitive impairment and abnormal protein glycosylation (34, 35).
- The SLC9A7 gene (Xp11.3) encodes a sodium/potassium/proton antiporter 7 (NHE7), and mutations in this gene are associated with altered pH of the Golgi and altered glycosylation (36). It is one of the X-linked genes implicated in Alzheimer’s disease (37).
Chaperone –
- Cosmc (C1GALT1C1 or COSMC) (Xq24) is the chaperone for the T-synthase and is required for formation of the active enzyme (C1GALT1) (38). Heritable mutations in this gene are associated with COSMC-CDG (39). Acquired (de novo) mutations in COSMC also occur in patients who are genetically mosaic as a consequence (40). Mutation of COSMC in hematopoietic stem cells creates blood cell lineages in a mosaic presentation whereby patients present with Tn Syndrome (41).
Others –
- Signal sequence receptor protein 4 (SSR4) (Xq28) is a subunit (TRAP δ) of the heterotetrameric translocon-associated protein (TRAP) complex (42). SSR4 is needed for the translocation of proteins across the membrane of the endoplasmic reticulum, which enhances the efficiency of their N-linked glycosylation (43). Heritable mutations in this gene are associated with SSR4-CDG (44-46).
- Xg glycoprotein (Xg blood group) (XG) (Xp22.33) encodes the Xg(a+) and Xg(a−) blood group; this is a glycoprotein expressing from either the a+ or a- allele, and is the only human blood system where the antigen-encoding genes are located on the X chromosome (47, 48).
- Glucose-6-phosphate dehydrogenase (G6PD) (Xq28) converts Glc-6-P to 6-phosphogluconate (6PG), the first committed step in the Pentose Phosphate Pathway (PPP). This drives the production of NADPH in the presence of NADP. G6PD is the most common human enzyme defect known, affecting upward of 400 million people worldwide (49). To date, there are 186 known human G6PD mutations, and most are point mutations affecting a single nucleotide. This is the only pathway in red blood cells to produce NADPH (50). [Interestingly, G6PD is modified by O-GlcNAc (OGT) in response to hypoxia, which generates metabolites important as anti-oxidants (51).]
- Collagen type IV alpha 5 chain (COL4A5) (Xq22.3) encodes the alpha 5 chain in basement membrane type IV collagen; mutations in this gene are associated with X-linked Alport syndrome (52).
- Collagen type IV alpha 6 chain (COL4A6) (Xq22.3) encodes the alpha 6 chain in basement membrane type IV collagen. Deletions in the alpha 5 gene that extend into the alpha 6 gene result in diffuse leiomyomatosis accompanying the X-linked Alport syndrome caused by the deletion in the alpha 5 gene COL4A5 (53).
References:
1. Balaton, B. P., Dixon-McDougall, T., Peeters, S. B., and Brown, C. J. (2018) The eXceptional nature of the X chromosome Hum Mol Genet 27, R242-R249
2. Ross, M. T., Grafham, D. V., Coffey, A. J., Scherer, S., McLay, K., Muzny, D. et al. (2005) The DNA sequence of the human X chromosome Nature 434, 325-337
3. Chang, I. J., He, M., and Lam, C. T. (2018) Congenital disorders of glycosylation Ann Transl Med 6, 477
4. Sun, A. (2018) Lysosomal storage disease overview Ann Transl Med 6, 476
5. O'Donnell, N., Zachara, N. E., Hart, G. W., and Marth, J. D. (2004) Ogt-dependent X-chromosome-linked protein glycosylation is a requisite modification in somatic cell function and embryo viability Mol Cell Biol 24, 1680-1690
6. Kreppel, L. K., Blomberg, M. A., and Hart, G. W. (1997) Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats J Biol Chem 272, 9308-9315
7. Vaidyanathan, K., Niranjan, T., Selvan, N., Teo, C. F., May, M., Patel, S. et al. (2017) Identification and characterization of a missense mutation in the O-linked beta-N-acetylglucosamine (O-GlcNAc) transferase gene that segregates with X-linked intellectual disability J Biol Chem 292, 8948-8963
8. Willems, A. P., Gundogdu, M., Kempers, M. J. E., Giltay, J. C., Pfundt, R., Elferink, M. et al. (2017) Mutations in N-acetylglucosamine (O-GlcNAc) transferase in patients with X-linked intellectual disability J Biol Chem 292, 12621-12631
9. Selvan, N., George, S., Serajee, F. J., Shaw, M., Hobson, L., Kalscheuer, V. et al. (2018) O-GlcNAc transferase missense mutations linked to X-linked intellectual disability deregulate genes involved in cell fate determination and signaling J Biol Chem 293, 10810-10824
10. Pravata, V. M., Muha, V., Gundogdu, M., Ferenbach, A. T., Kakade, P. S., Vandadi, V. et al. (2019) Catalytic deficiency of O-GlcNAc transferase leads to X-linked intellectual disability Proc Natl Acad Sci U S A 116, 14961-14970
11. Pravata, V. M., Omelkova, M., Stavridis, M. P., Desbiens, C. M., Stephen, H. M., Lefeber, D. J. et al.(2020) An intellectual disability syndrome with single-nucleotide variants in O-GlcNAc transferase Eur J Hum Genet 28, 706-714
12. Mayfield, J. M., Hitefield, N. L., Czajewski, I., Vanhye, L., Holden, L., Morava, E. et al. (2024) O-GlcNAc transferase congenital disorder of glycosylation (OGT-CDG): Potential mechanistic targets revealed by evaluating the OGT interactome J Biol Chem 300, 107599
13. Pravata, V. M., Gundogdu, M., Bartual, S. G., Ferenbach, A. T., Stavridis, M., Ounap, K. et al. (2020) A missense mutation in the catalytic domain of O-GlcNAc transferase links perturbations in protein O-GlcNAcylation to X-linked intellectual disability FEBS Lett 594, 717-727
14. Miyata, T., Takeda, J., Iida, Y., Yamada, N., Inoue, N., Takahashi, M. et al. (1993) The cloning of PIG-A, a component in the early step of GPI-anchor biosynthesis Science 259, 1318-1320
15. Kinoshita, T. (2020) Biosynthesis and biology of mammalian GPI-anchored proteins Open Biol 10, 190290
16. Liu, X., Meng, J., Ma, J., Shu, J., Gu, C., Chen, X. et al. (2022) The correlation between multiple congenital anomalies hypotonia seizures syndrome 2 and PIGA: a case of novel PIGA germline variant and literature review Mol Biol Rep 49, 10469-10477
17. Sahin, F., Yilmaz, A. F., Ozkan, M. C., Gokmen, N. M., and Saydam, G. (2015) PNH is a debilitating, fatal but treatable disease: same disease, different clinical presentations Am J Blood Res 5, 30-33
18. Luzzatto, L., and Karadimitris, A. (2020) Paroxysmal nocturnal haemoglobinuria (PNH): novel therapies for an ancient disease Br J Haematol 191, 579-586
19. Hill, A., DeZern, A. E., Kinoshita, T., and Brodsky, R. A. (2017) Paroxysmal nocturnal haemoglobinuria Nat Rev Dis Primers 3, 17028
20. Gao, X. D., Tachikawa, H., Sato, T., Jigami, Y., and Dean, N. (2005) Alg14 recruits Alg13 to the cytoplasmic face of the endoplasmic reticulum to form a novel bipartite UDP-N-acetylglucosamine transferase required for the second step of N-linked glycosylation J Biol Chem 280, 36254-36262
21. Chantret, I., Dancourt, J., Barbat, A., and Moore, S. E. (2005) Two proteins homologous to the N- and C-terminal domains of the bacterial glycosyltransferase Murg are required for the second step of dolichyl-linked oligosaccharide synthesis in Saccharomyces cerevisiae J Biol Chem 280, 9236-9242
22. Shah, R., Johnsen, C., Pletcher, B. A., Edmondson, A. C., Kozicz, T., and Morava, E. (2023) Long-term outcomes in ALG13-Congenital Disorder of Glycosylation Am J Med Genet A 191, 1626-1631
23. Habuchi, H., Tanaka, M., Habuchi, O., Yoshida, K., Suzuki, H., Ban, K. et al. (2000) The occurrence of three isoforms of heparan sulfate 6-O-sulfotransferase having different specificities for hexuronic acid adjacent to the targeted N-sulfoglucosamine J Biol Chem 275, 2859-2868
24. Paganini, L., Hadi, L. A., Chetta, M., Rovina, D., Fontana, L., Colapietro, P. et al. (2019) A HS6ST2 gene variant associated with X-linked intellectual disability and severe myopia in two male twins Clin Genet 95, 368-374
25. Thiselton, D. L., McDowall, J., Brandau, O., Ramser, J., d'Esposito, F., Bhattacharya, S. S. et al. (2002) An integrated, functionally annotated gene map of the DXS8026-ELK1 interval on human Xp11.3-Xp11.23: potential hotspot for neurogenetic disorders Genomics 79, 560-572
26. Zhai, L., Mu, J., Zong, H., DePaoli-Roach, A. A., and Roach, P. J. (2000) Structure and chromosomal localization of the human glycogenin-2 gene GYG2 Gene 242, 229-235
27. Imagawa, E., Osaka, H., Yamashita, A., Shiina, M., Takahashi, E., Sugie, H. et al. (2014) A hemizygous GYG2 mutation and Leigh syndrome: a possible link? Hum Genet 133, 225-234
28. Lee, Y. Q., Storry, J. R., Karamatic Crew, V., Halverson, G. R., Thornton, N., and Olsson, M. L. (2019) A large deletion spanning XG and GYG2 constitutes a genetic basis of the Xg(null) phenotype, underlying anti-Xg(a) production Transfusion 59, 1843-1849
29. Fox, M. F., DuToit, D. L., Warnich, L., and Retief, A. E. (1984) Regional localization of alpha-galactosidase (GLA) to Xpter----q22, hexosaminidase B (HEXB) to 5q13----qter, and arylsulfatase B (ARSB) to 5pter----q13 Cytogenet Cell Genet 38, 45-49
30. El-Abassi, R., Singhal, D., and England, J. D. (2014) Fabry's disease J Neurol Sci 344, 5-19
31. Miura, N., Ishida, N., Hoshino, M., Yamauchi, M., Hara, T., Ayusawa, D. et al. (1996) Human UDP-galactose translocator: molecular cloning of a complementary DNA that complements the genetic defect of a mutant cell line deficient in UDP-galactose translocator J Biochem 120, 236-241
32. Yates, T. M., Suri, M., Desurkar, A., Lesca, G., Wallgren-Pettersson, C., Hammer, T. B. et al. (2018) SLC35A2-related congenital disorder of glycosylation: Defining the phenotype Eur J Paediatr Neurol 22, 1095-1102
33. Rujano, M. A., Cannata Serio, M., Panasyuk, G., Peanne, R., Reunert, J., Rymen, D. et al. (2017) Mutations in the X-linked ATP6AP2 cause a glycosylation disorder with autophagic defects J Exp Med214, 3707-3729
34. Jansen, E. J., Timal, S., Ryan, M., Ashikov, A., van Scherpenzeel, M., Graham, L. A. et al. (2016) ATP6AP1 deficiency causes an immunodeficiency with hepatopathy, cognitive impairment and abnormal protein glycosylation Nat Commun 7, 11600
35. Ondruskova, N., Honzik, T., Vondrackova, A., Stranecky, V., Tesarova, M., Zeman, J. et al. (2020) Severe phenotype of ATP6AP1-CDG in two siblings with a novel mutation leading to a differential tissue-specific ATP6AP1 protein pattern, cellular oxidative stress and hepatic copper accumulation J Inherit Metab Dis 43, 694-700
36. Khayat, W., Hackett, A., Shaw, M., Ilie, A., Dudding-Byth, T., Kalscheuer, V. M. et al. (2019) A recurrent missense variant in SLC9A7 causes nonsyndromic X-linked intellectual disability with alteration of Golgi acidification and aberrant glycosylation Hum Mol Genet 28, 598-614
37. Belloy, M. E., Le Guen, Y., Stewart, I., Williams, K., Herz, J., Sherva, R. et al. (2024) Role of the X Chromosome in Alzheimer Disease Genetics JAMA Neurol 81, 1032-1042
38. Ju, T., and Cummings, R. D. (2002) A unique molecular chaperone Cosmc required for activity of the mammalian core 1 beta 3-galactosyltransferase Proc Natl Acad Sci U S A 99, 16613-16618
39. Erger, F., Aryal, R. P., Reusch, B., Matsumoto, Y., Meyer, R., Zeng, J. et al. (2023) Germline C1GALT1C1 mutation causes a multisystem chaperonopathy Proc Natl Acad Sci U S A 120, e2211087120
40. Aryal, R. P., Ramanujan, A., Bucci, C., Neckelmann, C., Heimburg-Molinaro, J., Cummings, S. F. et al.(2025) C1GALT1C1-Associated Mosaic Disorder of Glycosylation in a Female J Inherit Metab Dis 48, e70006
41. Ju, T., and Cummings, R. D. (2005) Protein glycosylation: chaperone mutation in Tn syndrome Nature437, 1252
42. Russo, A. (2020) Understanding the mammalian TRAP complex function(s) Open Biol 10, 190244
43. Castiglioni, C., Feillet, F., Barnerias, C., Wiedemann, A., Muchart, J., Cortes, F. et al. (2021) Expanding the phenotype of X-linked SSR4-CDG: Connective tissue implications Hum Mutat 42, 142-149
44. Verde, A., Cutri, M. R., Pagani, F., Pilotta, A., Pinelli, L., Asaro, A. et al. (2025) Letter to the Editors: Concerning "SSR4-CDG, an ultra-rare X-linked congenital disorder of glycosylation affecting the TRAP complex: Review of 22 affected individuals including the first adult patient" by Johnsen et al Mol Genet Metab 145, 109136
45. Trujillo, I., Aguirre-Flores, M. E., Sarkis, P., and Osundiji, M. A. (2025) Letter to the editor: SSR4-CDG, an ultra-rare X-linked congenital disorder of glycosylation affecting the TRAP complex: Review of 22 affected individuals including the first adult patient Mol Genet Metab 145, 109106
46. Johnsen, C., Tabatadze, N., Radenkovic, S., Botzo, G., Kuschel, B., Melikishvili, G. et al. (2024) SSR4-CDG, an ultra-rare X-linked congenital disorder of glycosylation affecting the TRAP complex: Review of 22 affected individuals including the first adult patient Mol Genet Metab 142, 108477
47. Mann, J. D., Cahan, A., Gelb, A. G., Fisher, N., Hamper, J., Tippett, P. et al. (1962) A sex-linked blood group Lancet 1, 8-10
48. Ellis, N. A., Tippett, P., Petty, A., Reid, M., Weller, P. A., Ye, T. Z. et al. (1994) PBDX is the XG blood group gene Nat Genet 8, 285-290
49. Devendra, R., Gupta, V., Shanmugam, R., Singh, M., Patel, P., Valecha, N. et al. (2020) Prevalence and spectrum of mutations causing G6PD deficiency in Indian populations Infect Genet Evol 86, 104597
50. Gomez-Manzo, S., Marcial-Quino, J., Vanoye-Carlo, A., Serrano-Posada, H., Ortega-Cuellar, D., Gonzalez-Valdez, A. et al. (2016) Glucose-6-Phosphate Dehydrogenase: Update and Analysis of New Mutations around the World Int J Mol Sci 17,
51. Rao, X., Duan, X., Mao, W., Li, X., Li, Z., Li, Q. et al. (2015) O-GlcNAcylation of G6PD promotes the pentose phosphate pathway and tumor growth Nat Commun 6, 8468
52. Knebelmann, B., Breillat, C., Forestier, L., Arrondel, C., Jacassier, D., Giatras, I. et al. (1996) Spectrum of mutations in the COL4A5 collagen gene in X-linked Alport syndrome Am J Hum Genet 59, 1221-1232
53. Sugimoto, M., Oohashi, T., and Ninomiya, Y. (1994) The genes COL4A5 and COL4A6, coding for basement membrane collagen chains alpha 5(IV) and alpha 6(IV), are located head-to-head in close proximity on human chromosome Xq22 and COL4A6 is transcribed from two alternative promoters Proc Natl Acad Sci U S A 91, 11679-11683
